
Meta-Complexity

Open Problems

Simons Institute for the Theory of Computing

Spring 2023

1



Contents

NP-Hardness of Meta-Complexity of Average-Case Complexity (Hanlin Ren) . . . . . . . . . 3

Witnessing of NP 6⊆ P/poly (Ján Pich) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Narrow the Gap in an Impossibility Result (Eric Allender) . . . . . . . . . . . . . . . . . . . 6

Tractable(?) Open Questions about Partial MCSP (Shuichi Hirahara) . . . . . . . . . . . . . 7

Refuting Symmetry of Information for rKt (Zhenjian Lu) . . . . . . . . . . . . . . . . . . . . 9

Open Questions in Relativized Heuristica (Mikito Nanashima) . . . . . . . . . . . . . . . . . 10

Characterizing Exponentially hard OWFs (Yanyi Liu) . . . . . . . . . . . . . . . . . . . . . . 12

Degree-2 Avoid (Karthik Gajulapalli) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Which theories prove PIT is in P/poly? (Albert Atserias) . . . . . . . . . . . . . . . . . . . . 14

2



NP-Hardness of Meta-Complexity of Average-Case Complexity

Submitted by Hanlin Ren on 28/January/2023.

Description. Many meta-complexity problems are known to be NP-hard (see, e.g., [Ila20a; Ila20b;
ILO20]). In these NP-hardness reductions, the Yes instances generated are computable by a small
circuit, and the No instances are worst-case hard against the same class of circuits. Can we prove
the NP-hardness of meta-complexity problems where the No instances are average-case hard against
the corresponding circuit family? For example, while the NP-hardness of DNF-MCSP is already
known [All+06], the following problem remains open:

Problem 1. Is the following problem NP-hard under quasi-polynomial time randomized reductions?

• Input: the truth table of a function f : {0, 1}n → {0, 1} and a size parameter s.

• Yes instances: there is a size-s DNF that computes f on the worst case.

• No instances: for every size-s DNF F , Prx←{0,1}n [F (x) = f(x)] ≤ 0.9.

The second question concerns polylog-time-bounded Kolmogorov complexity. Despite being
(seemingly) less natural, it has an interesting motivation, namely to capture the PCP theorem by
meta-complexity.

In what follows, let U be a universal random access machine. Given a machine d, some auxiliary
input x, and a time bound t, Ud,x(t) = 1 if and only if the machine d accepts the input x in time t.
We assume that d has random access to x, and each random access requires exactly dlog |x|e time
(to write down the address i if we want to access xi). We also assume that U has random access to
both d and x (so if it is the case that |d| > t but d still terminates in t steps, U can also simulate
everything in poly(t) steps without reading d entirely).

Given this model, we can define the conditional polylog-time-bounded Kolmogorov complexity as
follows: Let t = polylog(n), x ∈ {0, 1}n, y ∈ {0, 1}poly(n), then Kt(x | y) is the minimum length
(|d| + |z|) over all descriptions (d, z) such that for every i ∈ [n + 1], U (y,z,i)(d, t) = xi. (Assume
xn+1 = ?.)

Problem 2. Let t = polylog(n). Is the following problem NP-hard under polynomial time random-
ized reductions?

• Input: strings x ∈ {0, 1}n, y ∈ {0, 1}poly(n) and a size parameter s.

• Yes instances: Kt(x | y) ≤ s.

• No instances: for every x′ that agrees with x on 90% fraction of indices, Kt(x′ | y) > s.

Denote Ave-cKpolylog as the meta-complexity problem in Problem 2. We observe that Ave-cKpolylog

has a simple PCP system: the prover sends a length-s description (d, z) to the verifier, the verifier
randomly picks some index i← [n], runs U (y,z,i)(d,polylog(n)), and sees if it equals to xi. Therefore,
an NP-hardness proof of Ave-cKpolylog would be a “meta-complexity analog” of the PCP theorem.

Additional comments: Hirahara [Hir22] provided an interesting example of “meta-complexity
of average-case complexity”. In particular, Hirahara showed that given the description of a sampler
D that produces a pair (x, y) ∈ {0, 1}n × {0, 1}, it is NP-hard to distinguish between the case that
(1) there is a circuit C of size s such that Pr(x,y)←D[C(x) = y] = 1 and that (2) for any circuit C

of size s · n1/ logO(1) logn, Pr(x,y)←D[C(x) = y] ≤ 0.51.
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Witnessing of NP 6⊆ P/poly

Submitted by Jan Pich and Rahul Santhanam on 30 January 2023.

Problem 3. Fix a constant k ≥ 1. Suppose that for each sufficiently big n, no circuit with n inputs
and size nk finds a satisfying assignment for each satisfiable propositional formula of size n, i.e.
no nk-size circuit solves the search version of SAT. Can we witness this assumption ‘feasibly’ by a
p-time function f such that for each sufficiently big n, for each nk-size circuit C with n inputs and
≤ n outputs, f(C) outputs a formula φ of size n together with a satisfying assignment a of φ such
that ¬φ(C(φ))?

Such a ‘witnessing’ function f exists under the assumption of the existence of a one-way function
and a function in E hard for subexponential-size circuits [4]. Is it, however, possible to construct it
without assuming more than the assumption we want to witness?

Related work.
Similar kinds of witnessing have been considered before in the literature, using diagonalization

techniques [1-3]. Indeed, Bogdanov, Talwar and Wan [2] call a similar feasible witnessing in the
uniform setting a “dreambreaker” (following Adam Smith) and show that such a feasible witnessing
can be constructed. However, in Problem 3 it is crucial that the witnessing function finds an error
on the input length of the given circuit.
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Narrow the Gap in an Impossibility Result

Submitted by Eric Allender on 31/January/2023.

Description. MKTP is the problem of computing the KT complexity of a string: MKTP =
{(x, i) : KT (x) < i}. It is shown in [AHT22, Theorem 35] that there is no projection f such that

z ∈ MKTP implies K(f(z)) > 4|f(z)|
5 and z 6∈ MKTP implies K(f(z)) < |f(z)|

5 .

Problem 4. Improve this gap from [15 ,
4
5 ] to, say, [13 ,

2
3 ].

Additional comments. Improving it to [12 − 2
√
logn, 12 + 2

√
logn] would show NL 6= NP.

References
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Electronic Colloquium on Computational Complexity (ECCC), 2022.
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Tractable(?) Open Questions about Partial MCSP

Submitted by Shuichi Hirahara on 3/February/2023.

Description. This is the set of open questions raised in my talk about [Hir22b] at the meta-
complexity reading group.

Problem 5. Prove that Formula-MCSP∗ is reducible to Formula-MCSP in subexponential time.

1. Ilango [Ila21] presented an exponential-time reduction (whose running time depends on the
size parameter) from Formula-MCSP∗ to Formula-MCSP.

2. There are polynomial-time partial-to-total reductions in the case of MCSP for DNF formulas
[All+08] and DNF-XOR formulas [HOS18].

Problem 6. Prove that Formula-MCSP∗ is NP-hard.1

Note that [Hir22b] shows NP-hardness of NC1-MCSP∗. Since Uhlig’s theorem does not hold for
formulas, you need to eliminate the usage of Uhlig’s theorem in the proof of [Hir22b].

Problem 7. Prove that MCSP is NP-hard under cryptographic assumptions (or any reasonable
assumptions).

Intuitively, the reason why the reduction of [Hir22b] outputs a partial function is that there
is no efficient way of checking that the shares are correctly distributed or not by a secret sharing
scheme. Cryptographic tools, such as zero knowledge proof systems, might be helpful.

Problem 8. Prove that AC0-Circuit-MCSP∗ is NP-hard. Here, we measure the size of an AC0

circuit by the number of gates in the circuit.

In the proof of [Hir22b], it is implicitly used that 2n ≈ K(f) = Θ̃(CC(f)) = Θ̃(2n/n) holds with
high probability over a uniformly random function f : {0, 1}n → {0, 1}. Here, CC(f) denotes the
circuit complexity of f and K(f) denotes the Kolmogorov complexity of f . On the other hand, a
uniformly random function has AC0 circuits of size Θ(2n/2) [Dan96].

Problem 9. Prove that GapMINKT∗,SAT is complete for Σp
2. Here, GapMINKT∗,SAT is the prob-

lem of approximating the time-bounded Kolmogorov complexity of a given string x up to an additive
error of O(log |x|).2

[Hir22b] shows that GapMINKT∗ is NP-hard. Problem 9 asks whether this result can be
relativized to the SAT oracle. Note that [Ko91] constructed an oracle A under which GapMINKT∗

is not NP-hard, but A is not SAT.
Problem 9 has a significant consequence to the worst- vs. average-case complexity of PH: If

Problem 9 is resolved, then DistPH 6⊆ AvgP unless PH collapses. The reason is as follows:

coNP ≤p
m NPNP = Σp

2 ≤
BPP
m GapMINKT∗,SAT ≤NP

m GapMINKTSAT,

where the last reduction follows from a simple partial-to-total reduction [GR22].3 The last problem
GapMINKTSAT is known to be in P if DistPH ⊆ AvgP [Hir20]. Thus, under the assumption that
PH is easy on average, we obtain coNP ⊆ AM.4

1I conjecture that this is the easiest open question.
2The precise definition of GapMINKTSAT can be found in [Hir22a].
3The reduction non-deterministically guesses how to fill out the stars by 0 or 1.
4In fact, one can also get NP = coNP.
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Refuting Symmetry of Information for rKt

Submitted by Zhenjian Lu on 21/February/2023.

Description. Symmetry of information for time-bounded Kolmogorov complexity states that For
every x, y ∈ {0, 1}∗, K(x, y) ≥ K(x) + K(x | y) − O(log(|x| + |y|)). It was known that symmetry
of information does not hold for Kt complexity unconditionally [Ron04], where Kt is a notion of
time-bounded Kolmogorov complexity introduced by Levin. A randomized analogue of Kt, called
rKt, was defined by Oliveira [Oli19]. It is not hard to show that if one-way functions exist, then
symmetry of information does not hold for rKt, but we don’t know how to show this unconditionally.

Problem 10. Refute symmetry of information for rKt. That is, show that for every constant
c ≥ 1, there are infinitely many n and x, y ∈ {0, 1}n such that rKt(x, y) ≥ rKt(x) + rKt(x |
y)− c · (log(|x|+ |y|))
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Open Questions in Relativized Heuristica

Submitted by Mikito Nanashima on 21/February/2023.

Description. I would like to share two open questions in Heuristica for which no relativization
barrier result is currently known (namely, relativizing proofs could still work for solving the problems
below).

The first question is about the relationships between learning and average-case complexity.
In [HN21], we showed that the errorless average-case easiness of NP implies a polynomial-time
PAC learner for polynomial-size circuits that works on only unknown P/poly-samplable example
distributions. Here, the main difference to the standard distribution-free PAC learner is that
the time-complexly of our learner needs to be polynomially larger than the time-complexity of
the sampling algorithm for example distributions. In addition, we showed that this additional
requirement is inevitable for subexponential-time learning in relativized Heuristica by presenting

the oracle separation between the average-case easiness of PH and 2
o( n

logn
)
-time distribution-free

PAC learning (for linear-size circuits). However, it is still open whether non-trivial distribution-
free PAC learning is feasible in relativized Heuristica.

Problem 11. Does DistNP ⊆ AvgP imply distribution-free weak learning for linear-size circuits in
time 2n/nω(1)? Or can we show a relativization barrier?

Even under the stronger assumption that DistPH ⊆ AvgP, the problem above is open. Note
that it is unclear whether the work [Hir21] yields a non-trivial learner because the instance size of
sample sets for learning linear size grows Ω(n2) for example size n.

The second question is about the relationships between errorless and error-prone average-case
complexity. In [HN22], we showed the oracle separation between errorless and error-prone average-
case complexity of NP. The proof heavily relies on a property of DNFs (which corresponds to
NP-computation), so extending the separation to the average-case error-prone complexity of PH is
currently out of reach. Does this mean we can indeed derive errorless average-case easiness of NP
from a stronger assumption on error-prone average-case easiness? Or, it is possible to improve the
oracle separation result in [HN22]?

Problem 12. Does DistPH ⊆ HeurP imply DistNP ⊆ AvgP? Or can we show a relativization
barrier?

The problem above is open even for a weaker consequence that DistNP ⊆ AvgSIZE[2
O( n

logn
)
].

Personally, I think showing the non-existence of auxiliary-input OWF [OW93] under DistPH ⊆
HeurP can be an interesting intermediate challenge towards an affirmative answer for Problem 12.
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Characterizing Exponentially hard OWFs

Submitted by Yanyi Liu on 21/Feb/2023.

Description. Exponentially hard one-way functions (OWFs) are polynomial time computable
functions that are hard to invert by exponential time attackers.

Problem 13. Find a natural computational assumption that characterizes the existence of expo-
nentially hard OWFs.

Additional comments Any natural hardness assumptions (whether or not related to meta-
complexity) are welcome.

Related work. It is shown in [LP21] that average-case hardness of time-bounded Kolmogorov
complexity problems characterizes OWFs with hardness ranging from polynomial to subexponen-
tial. Extending this result to the exponential hardness regime requires proving a strong version of
Yao’s hardness amplification lemma.
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Degree-2-Avoid

Submitted by Karthik Gajulapalli and Sidhant Saraogi on 23/March/2022.

Description. Degree-2-Avoid is a version of the range avoidance problem, where given a circuit
with n inputs, and m > n outputs, each output bit is computed by a degree-2 polynomial over its
input bits.

Problem 14. Are there algorithmic techniques to solve degree-2-Avoid that do not use a reduction
to NC3

0-Avoid?

Related work. In [Gaj+23] it was shown that degree-2-Avoid can encode hard combinatorial
objects like rigid-matrices. While randomized encodings [AIK06] provide a way of reducing degree-
2-Avoid to NC3

0-Avoid, such reductions end up killing the stretch of the resulting instance thus
making it a much harder problem to solve. In fact, solving degree-2-Avoid with super-linear stretch
m = n4/3 would provide construction of rigid matrices that beat the best known constructions by
[AC19] [Bha+20] and solving degree-2-Avoid for stretch m = 2n would imply a super-linear circuit
lowerbound due to Valiant’s program [Val77].
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Which theories prove PIT ∈ P/poly?

Submitted by Albert Atserias on 28/March/2023.

Description.
The Algebraic Formula Identity Problem (AFIT) is this: Given an algebraic formula with n

indeterminates x1, . . . , xn, addition and multiplication gates, and integer constants written in bi-
nary, does it compute the identically zero polynomial in Z[x1, . . . , xn]? It is well known that AFIT
is in co-RP, and hence in P/poly. It should be intuitive that Buss’ theory V1

2 for exponential-time
reasoning [Bus86] has the power to expand the given formula as an explicit sum of monomials
with coefficients of polynomial bit complexity, and then carry over the induction on the number of
variables in the proof of the Schwartz-Zippel Lemma. Is the full power of V1

2 needed?

Problem 15. Can the theory T2 prove AFIT ∈ P/poly? Can Jerabek’s theory APC1 [Jer07] prove
it? More precisely, prove (or disprove) there is an integer constant c ≥ 1 such that the theory can
prove the following sentence:

∀s∈Log ∃C<2s
c ∀A<2s (eval(C,A)=1↔ ∀x̄<2s

c
alg-eval(A, x̄)=0).

where eval(C,A) is the PV-symbol that represents the standard polynomial-time algorithm that eval-
uates the one-output Boolean circuit C on the binary representation of A as a string, and alg-eval(A, x̄)
is the PV-symbol that represents the standard polynomial-time algorithm that evaluates the algebraic
formula A on the integer input x̄ = (x1, . . . , xn).

Additional comments: Note that we are not asking the theory to prove that some (non-
constructively given) non-uniform sequence of polynomial-size Boolean circuits for AFIT is correct;
how would this even be stated in bounded arithmetic? We are only asking the theory to prove
that such a sequence of Boolean circuits exists. This is not known to imply that AFIT is in P or in
NP ∩ co-NP or any other such breakthrough.

The question is stated for AFIT but it could also be stated for finite fields, and for ACIT, the vari-
ant of the problem for algebraic circuits. In this last case, replace both occurrences of alg-eval(A, x̄)
by alg-eval-mod(A, x̄,m), where the latter represents the standard polynomial-time algorithm that
evaluates the algebraic circuit A on x̄ with arithmetic modulo m. Here, m is an sc-bit integer that
is to be quantified in the same way as x̄.

Related work. The motivation for this question is to assess on the strength of P/poly in the
theory V0

2. See [ABM23].
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