
Boolean Circuit Complexity and Two-Dimensional Cover Problems1

Bruno Cavalar*

Department of Computer Science
University of Warwick

Igor C. Oliveira†

Department of Computer Science
University of Warwick

2

July 31, 20243

Abstract4

We reduce the problem of proving deterministic and nondeterministic Boolean circuit size lower5

bounds to the analysis of certain two-dimensional combinatorial cover problems. This is obtained by6

combining results of Razborov (1989), Karchmer (1993), and Wigderson (1993) in the context of the7

fusion method for circuit lower bounds with the graph complexity framework of Pudlák, Rödl, and8

Savický (1988). For convenience, we formalize these ideas in the more general setting of “discrete9

complexity”, i.e., the natural set-theoretic formulation of circuit complexity, variants of communication10

complexity, graph complexity, and other measures.11

We show that random graphs have linear graph cover complexity, and that explicit super-logarithmic12

graph cover complexity lower bounds would have significant consequences in circuit complexity. We13

then use discrete complexity, the fusion method, and a result of Karchmer and Wigderson (1993) to14

introduce nondeterministic graph complexity. This allows us to establish a connection between graph15

complexity and nondeterministic circuit complexity.16

Finally, complementing these results, we describe an exact characterization of the power of the fusion17

method in discrete complexity. This is obtained via an adaptation of a result of Nakayama and Maruoka18

(1995) that connects the fusion method to the complexity of “cyclic” Boolean circuits, which generalize19

the computation of a circuit by allowing cycles in its specification.20

*E-mail: brunocavalar@gmail.com
†E-mail: igor.oliveira@warwick.ac.uk

1

Contents21

1 Introduction 222

1.1 Overview . 223

1.2 Results . 324

2 Discrete Complexity 625

2.1 Definitions and notation . 626

2.2 Examples . 727

2.3 Basic lemmas and other useful results . 828

2.4 Transference of lower bounds . 929

2.5 Cyclic Discrete Complexity . 1130

3 Characterizations of Discrete Complexity via Set-Theoretic Fusion 1231

3.1 Definitions and notation . 1232

3.2 Discrete complexity lower bounds using the fusion method 1333

3.3 Set-theoretic fusion as a complete framework for lower bounds 1434

3.4 An exact characterization via cyclic discrete complexity . 1735

4 Graph Complexity and Two-Dimensional Cover Problems 1936

4.1 Basic results and connections . 1937

4.2 A simple lower bound example . 2038

4.3 Nondeterministic graph complexity . 2239

1 Introduction40

1.1 Overview41

Obtaining circuit size lower bounds for explicit Boolean functions is a central research problem in the-42

oretical computer science. While restricted classes of circuits such as constant-depth circuits and monotone43

circuits are reasonably well understood (see, e.g., [Juk12]), understanding the power and limitations of44

general (unrestricted) Boolean circuits remains a major challenge.45

The strongest known lower bounds on the number of gates necessary to compute an explicit Boolean46

function f : {0, 1}n → {0, 1} are of the form C · n for a constant C ≤ 5. The largest known value of C47

depends on the exact set of allowed operations (see [LY22, FGHK16] and references therein). To the best of48

our knowledge, the existing lower bounds on gate complexity for unrestricted Boolean circuits with a single49

output bit have all been obtained via the gate elimination method and its extensions. Unfortunately, it is not50

expected that this technique can lead to much better bounds [GHKK16], let alone super-linear circuit size51

lower bounds.52

This paper revisits a classical approach to lower bounds known as the fusion method [Raz89, Kar93].53

The latter reduces the analysis of the circuit complexity of a Boolean function to obtaining bounds on certain54

related combinatorial cover problems. The method can also be adapted to weaker circuit classes, where it55

has been successful in some contexts (see [Wig93] for an overview of results).156

An advantage of the fusion method over the gate elimination method is that it provides a tight charac-57

terization (up to a constant or polynomial factor, depending on the formulation) of the circuit complexity of58

1The fusion method can be seen as an instantiation of the generalized approximation method. For a self-contained exposition of
the connection between the fusion method and the approximation method, we refer the reader to [Oli18].

2

a function. In particular, if a strong enough circuit lower bound holds, then in principle it can be established59

via the fusion method.60

Contributions. We can informally summarize our contributions as follows:61

1. We exhibit a new instantiation of the fusion method that reduces the problem of proving determin-62

istic and nondeterministic Boolean circuit size lower bounds to the analysis of “two-dimensional”63

combinatorial cover problems.64

2. To achieve this, we introduce a framework that combines the fusion method for lower bounds with65

the notion of graph complexity and its variants [PRS88, Juk13]. In particular, we observe that cover66

complexity offers a particularly strong “transference” theorem between Boolean circuit complexity67

and graph complexity.68

3. As a byproduct of our conceptual and technical contributions, we obtain a tight asymptotic bound69

on the cover complexity of a random graph, and introduce a useful notion of nondeterministic graph70

complexity.71

4. Finally, we describe an exact correspondence between cover complexity and circuit complexity. This72

is relevant for the investigation of state-of-the-art circuit lower bounds of the form C · n, where C is73

constant.74

In the next section, we describe these results and their connections to previous work in more detail.75

1.2 Results76

Notation. Given a family B = {B1, . . . , Bm}, where each set Bi is contained in a finite fixed ground set77

Γ, and a target set A, we let D(A | B) denote the minimum total number of pairwise unions and intersections78

needed to construct A starting from B1, . . . , Bm. We say that D(A | B) is the discrete complexity of A with79

respect to B (see Section 2.1 for a formal presentation). We will be interested in the discrete complexity of80

non-trivial sets A, i.e., when A ̸= ∅ and A ̸= Γ.81

This general definition can be used to capture a variety of problems. For instance, the monotone circuit82

complexity of a function f : {0, 1}n → {0, 1} is simply D(f−1(1) | {x1, . . . , xn, ∅, 1̄}), where each symbol83

from {x1, . . . , xn, ∅, 1̄} represents the natural corresponding subset of {0, 1}n. Similarly, we can capture84

(non-monotone) Boolean circuit complexity by considering the family Bn = {x1, . . . , xn, x1, . . . , xn} of85

subsets of {0, 1}n and the corresponding complexity measure D(f−1(1) | Bn).86

Let N = 2n for some n ∈ N, and let [N] = {1, 2, . . . , N}. As another example in discrete complexity,87

we can consider subsets R1, . . . , RN , C1, . . . , CN of the ground set [N]× [N], where each set Ri = {(i, j) |88

j ∈ [N]} corresponds to the i-th “row”, and each set Cj = {(i, j) | i ∈ [N]} corresponds to the j-89

th “column”. Then, given a set G ⊆ [N] × [N] and GN,N = {R1, . . . , RN , C1, . . . , CN}, the quantity90

D(G | GN,N) is known as the graph complexity of G (see [PRS88, Juk13]).91

For the discussion below, we will need another definition. We let D∩(A | B) denote the minimum92

number of pairwise intersections sufficient to construct A from the sets in B. We say that D∩(A | B) is the93

intersection complexity of A with respect to B. We refer to Figure 1 for an example. It is possible to show94

that D∩(A | B) and D(A | B) are polynomially related, with a dependency on |B| (see Section 2.3 for more95

details).96

Given an arbitrary set A and a family B as above, one can introduce a complexity measure ρ(A,B)97

that is closely related to D(A | B). In more detail, we define an appropriate bipartite graph ΦA,B =98

(Vpairs, Vfilters, E), called the cover graph of A and B, and let ρ(A,B) denote the minimum number of ver-99

tices in Vpairs whose adjacent edges cover all the vertices in Vfilters. (Since the definition of the graph ΦA,B100

3

Figure 1: A graphical representation of a set G ⊆ [5] × [5] of intersection complexity D∩(G | G5,5) ≤ 2
via G =

(
(R2 ∪R4) ∩ (C1 ∪ C3 ∪ C5)

)
∪
(
(C2 ∪ C4) ∩ (R1 ∪R3 ∪R5)

)
.

is somewhat technical and won’t be needed in the subsequent discussion, it is deferred to Section 3.1). We101

say that ρ(A,B) is the cover complexity of A with respect to B.102

103

Our first observation is that, by a straightforward adaptation of the fusion method for lower bounds104

[Raz89, Kar93, Wig93] to our framework, the following relation holds:105

ρ(A,B) ≤ D∩(A | B) ≤ ρ(A,B)2. (1)

In particular, cover complexity provides a lower bound on intersection complexity. We are particularly106

interested in applications of the inequalities above to graph complexity. There are two main reasons for this.107

Firstly, to each graph G ⊆ [N]× [N] one can associate a natural Boolean function fG : {0, 1}n×{0, 1}n →108

{0, 1} (see Section 2.4), where N = 2n, and it is known that lower bounds on the graph complexity of G109

yield lower bounds on the Boolean circuit complexity of fG [PRS88]. (There can be a significant loss on the110

parameters of such transference results depending on the context. We refer to [Juk13] for more details. See111

also the discussion before Remark 14 below.) Secondly, the cover problem defining ρ(G,GN,N) involves a112

two-dimensional ground set [N]× [N], in contrast to the n-dimensional ground set {0, 1}n found in Boolean113

function complexity. We hope this perspective can inspire new techniques, and indeed we show how this114

perspective can be used to give a tight bound for a natural Boolean function in Section 4.2.115

Our second observation is that a tight connection can be established between graph complexity and116

Boolean circuit complexity by focusing on intersection complexity and cover complexity.117

Lemma 1 (Transference of Lower Bounds). For every non-trivial bipartite graph G ⊆ [N] × [N] and118

corresponding Boolean function fG : {0, 1}n × {0, 1}n → {0, 1}, we have119

ρ(f−1
G (1),B2n) ≥ ρ(G,GN,N), and (2)

D(f−1
G (1) | B2n) ≥ D∩(G | GN,N). (3)

The second inequality is implicit in the literature on graph complexity. We include it in the statement of120

Lemma 1 for completeness. Using Lemma 1, Equation (1), and another idea, we note in Section 2.4 that a121

lower bound of the form C ·logN on ρ(G,GN,N) yields a lower bound of the form C ·m−O(1) on the AND122

complexity of a related function F : {0, 1}m → {0, 1}. It is worth noting that lower bounds of the form123

Cn for C > 1 on the AND complexity of explicit Boolean functions can be obtained using gate-elimination124

techniques [Gol18], so the problem considered here does not suffer from a “barrier” at n gates as in the125

setting of multiplicative complexity [Sch88]. We leave open the problem of matching (or more ambitiously126

strengthening) existing Boolean circuit lower bounds obtained via gate elimination using our framework.127

Complementing the approach to non-trivial circuit lower bounds discussed above, we show the following128

result for non-explicit graphs.129

4

Theorem 2 (Cover complexity of a random graph). Let N = 2n, and let G ⊆ [N] × [N] be a uniformly
random bipartite graph. Then, asymptotically almost surely,

ρ(G,GN,N) = Θ(N).

Since the state of the art in Boolean circuit lower bounds is of the form C · n for a small constant C, the130

discussion above motivates the investigation of a tighter version of Equation (1). Next, we show that cover131

complexity can be exactly characterized using the complexity of cyclic constructions. Roughly speaking,132

Dœ(A | B) denotes the minimum number of unions and intersections in a cyclic construction of A from sets133

in B, where a cyclic construction can be seen as the analogue of a Boolean circuit allowed to contain cycles.134

We refer to Section 2.5 for the definition. Similarly, we can also consider Dœ
∩ (A | B), the intersection135

complexity of cyclic constructions.136

Theorem 3 (Exact characterization of cover complexity). Let A ⊆ Γ be a non-trivial set, and let B ⊆ P(Γ)
be a non-empty family of sets. Then

ρ(A,B) = Dœ
∩ (A | B).

This precise correspondence is obtained by refining an idea from [NM95], which obtained a characteri-137

zation of a variant of cover complexity up to a constant factor. There are some technical differences though.138

In contrast to their work, here we consider (monotone) semi-filters instead of a more general class of func-139

tionals F ⊆ P(U) in the definition of cover complexity, and intersection complexity instead of Boolean140

circuit complexity. Additionally, the result is presented in the set-theoretic framework of the fusion method141

(which is closer to our notion of discrete complexity), while [NM95] employed a formulation via legitimate142

models and the generalized approximation method.143

As an immediate consequence of Theorem 3 and a cover complexity lower bound from [Kar93], it144

follows that every monotone cyclic Boolean circuit that decides if an input graph on n vertices contains a145

triangle contains at least Ω(n3/(log n)4) fan-in two AND gates.2 We refer to Section 3.4 for more details.146

The tight bound in Theorem 3 highlights a mathematical advantage of the investigation of cyclic con-147

structions and cyclic Boolean circuits. Interestingly, the strongest known lower bounds against unrestricted148

(non-monotone) Boolean circuits obtained via the gate elimination method [LY22, FGHK16] also incorpo-149

rate concepts related to cyclic computations.150

Our last contribution is of a conceptual nature. The fusion method offers a different yet equivalent151

formulation of circuit complexity. This allows us to port some of the abstractions and characterizations152

provided by different notions of cover complexity to the setting of discrete complexity. As an example, we153

introduce nondeterministic graph complexity through a dual notion of “nondeterministic” cover complex-154

ity from [Kar93], and show a simple application to nondeterministic Boolean circuit lower bounds via a155

transference lemma for nondeterministic complexity.3156

Going beyond the contrast between state-of-the-art lower bounds for monotone and non-monotone com-157

putations, it would also be interesting to obtain an improved understanding of which settings of discrete158

complexity are susceptible to strong unconditional lower bounds.159

Organization. The main definitions are given in Section 2. To make the paper self-contained, we include160

a proof of Equation (1) in Section 3. The proof of Lemma 1 appears in Section 2.4 and Section 4.1. The161

proof of Theorem 2 is presented in Section 4.1, while the proof of Theorem 3 is given in Section 3.4.162

2This consequence does not immediately follow from the work of [NM95], as their formulation is not consistent with the use of
monotone functionals employed in the definition of ρ followed here and in [Kar93].

3Observe that the definition of nondeterministic complexity for Boolean functions relies on Boolean circuits extended with extra
input variables. It is not obvious how to introduce a natural analogue in the context of graph complexity, which relies on graph
constructions.

5

Finally, a discussion on nondeterministic graph complexity and a simple application of this notion appear in163

Section 4.3.164

Acknowledgements. We would like to thank Sasha Golovnev and Rahul Santhanam for discussions about165

the AND complexity of Boolean functions. This work received support from the Royal Society University166

Research Fellowship URF\R1\191059; the UKRI Frontier Research Guarantee Grant EP/Y007999/1; and167

the Centre for Discrete Mathematics and its Applications (DIMAP) at the University of Warwick.168

2 Discrete Complexity169

2.1 Definitions and notation170

We adopt the convention that N def
= {0, 1, 2, . . .}, N+ def

= N \ {0}, [t] def= {1, . . . , t}, where t ∈ N+, and171

P(·) is the power-set construction.172

Let Γ be a nonempty finite set. We refer to this set as the ground set, or the ambient space. Let173

B = {B1, . . . , Bm} be a family of subsets of Γ. We say that a set Bi ∈ B is a generator. Given a set174

A ⊆ Γ, we are interested in the minimum number of elementary set operations necessary to construct A175

from the generator sets in B. The allowed operations are union and intersection. Formally, we let D(A | B)176

be the minimum number t ≥ 1 such that there exists a sequence A1, . . . , At of sets contained in Γ for177

which the following holds: At = A, and for every i ∈ [t], Ai is either the union or the intersection of178

two (not necessarily distinct) sets in B ∪ {A1, . . . , Ai−1}. We say that a sequence of this form generates179

A from B. If there is no finite t for which such a sequence exists, then D(A | B) def
= ∞.4 Consequently,180

D : P(Γ)× P(P(Γ)) → N+ ∪ {∞}. We say that D(A | B) is the discrete complexity of A with respect to181

B.182

We use D∩(A | B) to denote the minimum number of intersections in any sequence that generates A183

from B. The value D∪(A | B) is defined analogously. We will often refer to these measures as intersection184

complexity and union complexity, respectively.185

Fact 4. If A ∈ B, then D(A | B) = 1 and D∩(A | B) = D∪(A | B) = 0.186

We have the following obvious inequality, which in general does not need to be tight (Fact 4 offers a187

trivial example).188

Fact 5. D(A | B) ≥ D∩(A | B) +D∪(A | B).189

When the ambient space Γ is clear from the context, we let Ec ⊆ Γ denote the complement of a set190

E ⊆ Γ. For convenience, for a set U ⊆ Γ, we use BU as a shorthand for B ∩ U . For a family of sets B, we191

let BU
def
= {BU | B ∈ B}.192

Let A1, . . . , At be a sequence of sets that generates A from B, where |B| = m. It will be convenient in193

some inductive proofs to consider the extended sequence B1, . . . , Bm, A1, . . . , At that includes as a prefix194

the generators from B. The particular order of the sets Bi is not relevant. While the extended sequence has195

length m + t, we will refer to it as a sequence of complexity t. Similarly, if the number of intersections196

employed in the definition of the sequence is k, we say it has intersection complexity k.197

Given a construction of A from B specified by a sequence A1, . . . , At and its corresponding union198

and intersection operations, we let Λ be the set of intersections in the sequence, where we represent an199

intersection operation Aℓ = Ai ∩Aj by the pair (Ai, Aj).200

4A simple example is that of a non-monotone Boolean function represented by A ⊆ {0, 1}n and B as the family of generators
in monotone circuit complexity.

6

For an ambient space Γ and B ⊆ P(Γ), we use ⟨Γ,B⟩ to represent the corresponding discrete space. We201

assume for simplicity that Γ =
⋃

B∈B B. We extend the notation introduced above, and use D(A1, . . . , Aℓ |202

B) to denote the discrete complexity of simultaneously generating A1, . . . , Aℓ from B. In other words, this203

is the minimum number t such that there exists a sequence E1, . . . , Et of sets contained in Γ such that every204

set Ai appears in the sequence at least once, and each Ej is obtained from the preceding sets in the sequence205

and the sets in B either by a union or by an intersection operation.206

Finally, note that we tacitly assume in most proofs presented in this section that D(A | B) is finite,207

as otherwise the corresponding statements are trivially true. We will also assume in these statements that208

A ⊆
⋃

B∈B B = Γ in order to avoid trivial considerations.209

2.2 Examples210

2.2.1 Boolean circuit complexity211

This is the classical setting where for each n ∈ N+, Γ = {0, 1}n is the set of vertices of the n-212

dimensional hypercube, A corresponds to f−1(1) for a Boolean function f : {0, 1}n → {0, 1}, and B =213

{B1, . . . , Bn, B
c
1, . . . , B

c
n}, where Bi = {v ∈ Γ | vi = 1}. By definition, D(A | B) captures the circuit214

complexity of f . If we drop the generators Bc
i from the family B, and add the sets ∅ and 1̄

def
= {0, 1}n to it,215

we get monotone circuit complexity instead of circuit complexity.216

2.2.2 Bipartite graph complexity217

Let Γ = [N] × [M], where N,M ∈ N+. A set G ⊆ Γ can be viewed either as a bipartite graph with218

parts L = [N] and R = [M], or as an N × M {0, 1}-valued matrix. We let Ri ⊆ [N] × [M] denote the219

matrix with 1’s in the i-th row, and 0’s elsewhere. Similarly, Cj ⊆ [N] × [M] denotes the matrix with220

1’s in the j-th column, and 0’s elsewhere. (Each Ri and Cj is called a star in graph terminology). We221

let GN,M = {R1, . . . , RN , C1, . . . , CM}. The value D(G | GN,M) is known as the star complexity of G222

([PRS88], see also [Juk13] and references therein). We will refer to it simply as graph complexity. Notice223

that, for every non-empty graph G, D∩(G | GN,M) ≤ min{N,M}.224

We remark that a related notion of clique complexity is discussed in [Juk12]. In this notion, the generators225

are sets of the form WS :=
⋃

i∈S Ri and ZT :=
⋃

j∈T Cj , for some S ⊆ [N] and T ⊆ [M]. Let KN,M =226

{WS : S ⊆ [N]} ∪ {ZT : T ⊆ [M]}. Note that the intersection clique complexity of a graph G is equal to227

its intersection graph complexity (i.e., D∩(G | KN,M) = D∩(G | GN,M)).5228

One can also consider the graph complexity of non-bipartite graphs via an appropriate choice of gener-229

ators (as in, e.g., [Juk13]), though we will not be concerned with this variant in this work.230

2.2.3 Higher-dimensional generalizations of graph complexity231

This is the natural extension of the ambient space [N] × [N] to [N]d, where d ∈ N+ is a fixed di-232

mension. Every generator contained in [N]d is a set of elements described by a sequence of the form233

(⋆, . . . , ⋆, a, ⋆, . . . , ⋆), where an element a ∈ [N] is fixed in exactly one coordinate. We let G(d)
N be the234

corresponding family of generators. Notice that |G(d)
N | = dN . Given a d-dimensional tensor A ⊆ [N]d, we235

denote its d-dimensional graph complexity by D(A | G(d)
N).236

To some extent, graph complexity and Boolean circuit complexity are extremal examples of non-trivial237

discrete spaces, in the sense that the former minimizes the number of dimensions and maximizes the possible238

5We also remark that the decision tree clique complexity of a graph G (in which we are allowed to query an arbitrary generator
from KN,M) is known to capture exactly the communication complexity of an associated function fG [PRS88, Section 3].

7

values in each coordinate, while the latter does the opposite. The higher dimensional graphs generalize both239

cases.240

2.2.4 Combinatorial rectangles from communication complexity241

The domain is [N] × [N], and its associated family RN,N of generators contains every combinatorial242

rectangle R = U × V , where U, V ⊆ [N] are arbitrary subsets. In particular, |RN,N | = 22N , while243

the number of subsets of [N] × [N] is 2N
2
. Observe that RN,N extends the set of generators employed244

in graph complexity. Consequently, for G ⊆ [N] × [N], D(G | RN,N) ≤ D(G | GN,N). Moreover,245

D∩(G | RN,N) = 0 for every graph.246

247

Observe that there is an interesting contrast among all these different spaces: the ratio between the size of248

the ambient space and the number of generators. For instance, in graph complexity the two are polynomially249

related, in Boolean circuits the ambient space is exponentially larger, and in the discrete space involving250

combinatorial rectangles the opposite happens. These natural discrete spaces exhibit three important regimes251

of parameters in discrete complexity.252

2.3 Basic lemmas and other useful results253

By combining sequences, we have the following trivial inequality.254

Fact 6. For every set E ⊆ Γ and ⋄ ∈ {∩,∪}, D⋄(A | B) ≤ D⋄(A | E,B) +D⋄(E | B).6255

Proof. Let t1 = D⋄(A | E,B), witnessed by the sequence A1, . . . , At1 . Also, let t2 = D⋄(E | B), with a256

corresponding sequence E1, . . . , Et2 . Then E1, . . . , Et2 , A1, . . . , At1 is a sequence of length t1+t2 showing257

that D⋄(A | B) ≤ t1 + t2.258

Observe that a construction of an arbitrary set A from B provides a construction of AU from the sets in259

BU (recall that AU
def
= A ∩ U , etc.). Indeed, it is easy to see that if A1, . . . , At generates A from B, then260

A1
U , . . . , A

t
U generates AU from BU .261

Fact 7. D(AU | BU) ≤ D(A | B).262

For convenience, we say that A1
U , . . . , A

t
U is the relativization of the sequence A1, . . . , At with respect263

to U .264

The following simple technical fact will be useful. The proof is an easy induction via extended se-265

quences.266

Fact 8. If A and B are non-empty, then D∩(A | B) = D∩(A | B ∪ {∅}).267

The next lemma shows that intersection complexity and discrete complexity are polynomally related,268

with a dependency on |B|. This was first observed for monotone circuits in [AB87].269

Lemma 9 (Immediate from [Zwi96]). If 1 < D∩(A | B) = k < ∞, then

D(A | B) = O(k(|B|+ k)/ log k).

We describe a self-contained, indirect proof of a weaker form of this lemma in Section 3.3 (Corollary270

28).271

6We often abuse notation and write D(A | E,B) instead of D(A | {E} ∪ B).

8

Given A and B, there is a simple test to decide if D(A | B) is finite, i.e., if there exists a finite sequence272

that generates A from B. Let B = {B1, . . . , Bm}. Given w ∈ Γ, we let vec(w) ∈ {0, 1}m be the vector273

with vec(w)i = 1 if and only if w ∈ Bi. For a set C ⊆ Γ, let vec(C) = {vec(c) | c ∈ C}. For vectors274

u, v ∈ {0, 1}n, we write u ⪯ v if ui ≤ vi for each i ∈ [m].7275

Proposition 10 (Finiteness test). D(A | B) is finite if and only if there are no vectors u ∈ vec(A) and276

v ∈ vec(Ac) such that u ⪯ v.277

Proof. Let a ∈ A and b ∈ Ac be elements such that u = vec(a) ⪯ vec(b) = v. Suppose there is a278

construction A1, . . . , At of A from B. It follows easily by induction that b ∈ At, which is contradictory.279

On the other hand, if there is no element b and vector v with this property, it is not hard to see that A =280 ⋃
u∈vec(A)

⋂
i:ui=1Bi. This completes the proof of the proposition.281

Finally, observe that standard counting arguments yield the existence of sets of high discrete complexity.282

Lemma 11 (Complex sets). Let k = |Γ| and m = |B|. If 3s⌈log(m + s)⌉ < k, there exists a set A ⊆ Γ283

such that D(A | B) ≥ s.284

For instance, a random matrix M ⊆ [N] × [N] satisfies D(M | RN,N) = Ω(N), while a random285

graph G ⊆ [N] × [N] has D(G | GN,N) = Ω(N2/ logN). It is easy to see that the former lower bound is286

asymptotically tight. The tightness of the graph complexity bound is also known (cf. [Juk13, Theorem 1.7]).287

2.4 Transference of lower bounds288

The following lemma generalizes a similar reduction from graph complexity (see, e.g., [Juk13, Section289

1.3]).290

Lemma 12. Let ⟨Γ1,B1⟩ and ⟨Γ2,B2⟩ be discrete spaces, and ϕ : Γ1 → Γ2 be an injective function. Assume291

that B2 = {B2
1 , . . . , B

2
m}. Then, for every A1 ⊆ Γ1,292

D(ϕ(A1) | B2) ≥ D(A1 | B1)−D(ϕ−1(B2
1), . . . , ϕ

−1(B2
m) | B1)

≥ D(A1 | B1)−
∑
B∈B2

D(ϕ−1(B) | B1).

The result also holds with respect to the discrete complexity measures D∩ and D∪.293

Proof. Let A2 = ϕ(A1). Since ϕ is injective, ϕ−1(A2) = A1. Let B2
1 , . . . , B

2
m, C1, . . . , Ct = A2 be an

extended sequence that describes a construction of A2 from B2, where t = D(A2 | B2). We claim that

ϕ−1(B2
1), . . . , ϕ

−1(B2
m), ϕ−1(C1), . . . , ϕ

−1(Ct) = A1

is an extended sequence that describes a construction of A1 from {ϕ−1(B2
1), . . . , ϕ

−1(B2
m)}. Indeed, this294

can be easily verified by induction using that ϕ−1(C1 ∩ C2) = ϕ−1(C1) ∩ ϕ−1(C2) and ϕ−1(C1 ∪ C2) =295

ϕ−1(C1) ∪ ϕ−1(C2). The result immediately follows by replacing the initial sets in the construction above296

by a sequence that realizes D(ϕ−1(B2
1), . . . , ϕ

−1(B2
m) | B1).297

In particular, if we have a strong enough lower bound with respect to ⟨Γ1,B1⟩, and can construct an298

injective map ϕ : Γ1 → Γ2 such that for each B ∈ B2 the value D(ϕ−1(B) | B1) is small, we get a lower299

bound in ⟨Γ2,B2⟩. Moreover, if the original set A1 and the map ϕ are “explicit”, A2 = ϕ(A1) is explicit as300

well.301

7We note that vec(w) always has Hamming weight exactly 2 when B = GN,M and w ∈ [N] × [M]. There is a well-known
connection between slice functions and graph complexity (see, e.g., [Lok03]).

9

We provide next a simple example that will be useful later in the text. Given a binary string w ∈ {0, 1}n,302

which we represent as w = w1 . . . wn, let number(w) =
∑n−1

i=0 2i · wn−i be the number in {0, . . . , 2n −303

1} encoded by w. Let N = 2n, and let binary : [N] → {0, 1}n be the bijection that maps the integer304

number(w) + 1 to the corresponding string w ∈ {0, 1}n.305

Lemma 13 (Tight transference from graph complexity to circuit complexity). Let ⟨[N] × [N],GN,N ⟩ and
⟨{0, 1}2n,B2n⟩ be the discrete spaces corresponding to N × N graph complexity and 2n-bit circuit com-
plexity, respectively, where N = 2n. Moreover, let ϕ : [N] × [N] → {0, 1}2n be the bijective map defined

by ϕ(u, v)
def
= binary(u)binary(v). For every G ⊆ [N]× [N],

D∩(ϕ(G) | B2n) ≥ D∩(G | GN,N).

In particular, graph intersection complexity lower bounds yield circuit complexity lower bounds.306

Proof. By Lemma 12, it is enough to verify that for each B ∈ B2n, D∩(ϕ
−1(B) | GN,N) = 0. Recall from307

Section 2.2.1 that B2n = {B1, . . . , B2n, B
c
1, . . . , B

c
2n}, where Bi = {v ∈ {0, 1}2n | vi = 1}. if Bi ∈ B2n308

corresponds to the positive literal xi, then ϕ−1(Bi) is either a union of columns (when i > n) or a union309

of rows (when i ≤ n) in graph complexity (cf. Section 2.2.2). Consequently, in this case D∩(ϕ
−1(Bi) |310

GN,N) = 0 by Facts 4 and 6. On the other hand, for a Bc
i ∈ B2n, it is not hard to see that ϕ−1(Bc

i) also311

corresponds to either a union of rows or a union of columns. This completes the proof.312

An advantage of Lemma 13 over existing results connecting graph complexity and circuit complexity is313

that it offers a tighter connection between these two models by focusing on a convenient complexity measure314

(intersection complexity instead of circuit complexity).8315

Remark 14 (Circuit lower bounds from graph complexity lower bounds). Let C ≥ 1 be a constant. We note316

that a lower bound of the form C · logN on D∩(H | GN,N) for an explicit graph H can be translated into317

the same lower bound on the circuit complexity of a related explicit Boolean function. In more detail, let318

fH : {0, 1}2n → {0, 1} be the Boolean function corresponding to a bipartite graph H ⊆ [N] × [N]. Now319

consider the function F : {0, 1}1+2n → {0, 1} defined as follows. The value F (b, z) = fH(z) if the input bit320

b = 1, and F (b, z) = fH(z) = 1−fH(z) if b = 0. Note that if H can be computed in time poly(N) then the321

corresponding function F is in E = DTIME[2O(m)], where m = 2n+1 is the input length of F . Moreover,322

if D∩(H | GN,N) ≥ C · logN then any Boolean circuit computing F must contain at least C · 2n AND323

and OR gates in total (assuming a circuit model with access to input literals and without NOT gates). This324

follows from Lemma 13 and Boolean duality, i.e., that the AND complexity of a Boolean function coincides325

with the OR complexity of its negation. Formally, letting Bℓ denote the standard set of generators in the326

Boolean circuit complexity of ℓ-bit Boolean functions, we have:327

D(F | Bm) ≥ D∩(F | Bm) +D∪(F | Bm)

≥ D∩(fH | Bm) +D∪(fH | Bm)−O(1)

= D∩(fH | Bm) +D∩(fH | Bm)−O(1)

≥ 2 ·D∩(H | GN,N)−O(1)

≥ 2 · C · logN = C · 2n = C ·m−O(1).

8In the Magnification Lemma of [Juk13], it is already implicitly shown that D∩(fG | B2n) ≥ D∩(G | GN,N). However, the
literature in graph complexity focuses on the relationship between D(fG | B2n) and D(G | GN,N), where there is a constant
factor loss. In particular, the best transference bound known is D(fG | B2n) ≥ D(G | GN,N) − (4 + o(1))N (see [Juk13],
citing [Cha94]). This means that only a Ω(N) lower bound on D(G | GN,N) would imply a meaningful bound on D(fG | B2n),
whereas our setting allows us to transfer a (1 + ε) logN graph complexity lower bound into a (1 + ε)n circuit lower bound.

10

Remark 15 (Graph complexity lower bounds from circuit complexity lower bounds). It is not hard to show328

by Lemma 12 and a similar argument that a lower bound of the form ω(2n · n) on the circuit complexity of329

a function h : {0, 1}2n → {0, 1} implies a ω(N) lower bound in graph complexity, where N = 2n as usual.330

On the other hand, note that by a counting argument there exist graphs computed by a single (unbounded331

fan-in) union whose corresponding 2n-bit Boolean function has circuit complexity Ω(2n/n). In particular,332

it follows from Lemma 9 that a Boolean function can have exponential intersection complexity, while the333

corresponding graph has zero intersection complexity.334

2.5 Cyclic Discrete Complexity335

We introduce a variant of the complexity measure D(· | ·) that allows cyclic constructions. Formally,336

we use Dœ(A | B) to denote the cyclic discrete complexity of A with respect to B, defined as follows. We337

consider a syntactic sequence Ii, . . . , It, together with a fixed operation of the form Ii = Ki1 ⋆i Ki2 , where338

Ki1 ,Ki2 ∈ {I1, . . . , It}∪B and ⋆i ∈ {∩,∪}, for each i ∈ [t]. (Notice that we do not require i1, i2 < i.) The339

syntactic sequence is viewed as a formal description instead of an actual construction, and it is evaluated as340

follows. Initially, I0i
def
= ∅ for each i ∈ [t]. Then, for every j > 0, Iji

def
= Ij−1 ∪ (Kj−1

i1
⋆i K

j−1
i2

), where341

the sets in B remain fixed throughout the evaluation. We say that the syntactic sequence generates A from342

B if there exists j ∈ N such that Ij
′

t = A for every j′ ≥ j. Finally, we let Dœ(A | B) denote the minimum343

length t of such a sequence, if it exists. The complexity measure Dœ
∩ is defined analogously, and only takes344

into account the number of intersection operations in the definition of the syntactic sequence.345

Lemma 16 (Convergence of the evaluation procedure). Suppose I1, . . . , It together with the corresponding
⋆i operations define a syntactic sequence. Then, for every j ≥ t,

Ij+1
i = Iji .

In other words, the evaluation converges after at most t steps.346

Proof. The evaluation is monotone, in the sense that an element v ∈ Γ added to a set during the j-th step of347

the evaluation cannot be removed in subsequent updates. From the point of view of this fixed element, if it is348

not added to a new set during an update, it won’t be added to new sets in subsequent updates. Consequently,349

each set in the sequence converges after at most t iterations.350

Corollary 17 (Cyclic discrete complexity versus discrete complexity). For every set A ⊆ Γ and family
B ⊆ P(Γ) of generators,

Dœ
∩ (A | B) ≤ D∩(A | B) ≤ Dœ

∩ (A | B)2.

Proof. For the first inequality, observe that from every construction of A from B we can define an acyclic351

syntactic sequence that generates A from B. For the second inequality, simply unfold the evaluation of the352

syntactic sequence into a sequence that generates A from B. Since the additional union operations coming353

from the update step Iji = Ij−1 ∪ (Kj−1
i1

⋆i K
j−1
i2

) do not increase intersection complexity, the claimed354

upper bound follows from Lemma 16.355

We will employ cyclic discrete complexity in Section 3.4 to exactly characterize the power of the fusion356

method as a framework to lower bound discrete complexity. We finish this section with a concrete example357

that is relevant in the context of the fusion method (cf. Section 3.3).358

359

Example: The Fusion Problem ΠR. Let [m] = {1, . . . ,m}, Y ⊆ [m] be an initial subset of [m], and R360

be a fixed set of rules encoded by a set of triples of the form (a, b, c), where a, b, c ∈ [m] are arbitrary. The361

meaning of a rule (a, b, c) is that the element c should be added to Y in case this set already contains elements362

11

a and b. We let ΠR be the following computational problem: Given an arbitrary initial set Y ⊆ [m] as an363

input instance, is the top element m eventually added to Y ? (Observe that this problem is closely related to364

the GEN Boolean function investigated in [RM99] and related works.)365

Note that, for every fixed set R of rules, ΠR can be decided by a cyclic monotone Boolean circuit that
contains exactly |R| fan-in two AND gates. Indeed, it is enough to consider a circuit over input variables
y1, . . . , ym that contains three additional layers of gates, described as follows. The first layer contains fan-in
two OR gates f1, . . . , fm, where each fi is fed by the input variable yi and by a corresponding gate hi in
the third layer. Each rule (a, b, c) ∈ R gives rise to a fan-in two AND gate ga,b,c in the second layer of the
circuit, where ga,b,c = fa ∧ fb. Finally, in the third layer we have for each i ∈ [m] a corresponding OR gate
hi, where

hi =
∨

u,v∈[m],(u,v,i)∈R

gu,v,i.

(We stress that unbounded fan-in gates are used only to simplify the description of the circuit.) It is easy to366

see that the gate fm computes ΠR after at most O(|R|) iterations of the evaluation procedure.367

3 Characterizations of Discrete Complexity via Set-Theoretic Fusion368

The technique presented in this section can be seen as a set-theoretic formulation of some results from369

[Raz89] and [Kar93]. The tighter characterization that appears in Section 3.4 is an adaptation of a result370

from [NM95].371

3.1 Definitions and notation372

For convenience, let U def
= Ac = Γ \ A, where Γ is the ambient space. We assume from now on that A373

is non-trivial, i.e., both A and Ac are non-empty.374

Definition 18 (Semi-filter). We say that a non-empty family F ⊆ P(U) of sets is a semi-filter over U if the375

following hold:376

• (upward closure) If U1 ∈ F and U1 ⊆ U2 ⊆ U , then U2 ∈ F .377

• (non-trivial) ∅ /∈ F .378

Definition 19 (Semi-filter above w). We say that F is above an element w ∈ Γ (with respect to B and379

U = Ac) if the following condition holds. For every B ∈ B, if w ∈ B then BU ∈ F .380

Figure 2 illustrates Definition 19 in the particularly simple and attractive 2-dimensional framework of381

graph complexity considered in this work.382

· • · • • · · · · · · • • · • · · • • • · ·
· · · • • • · · • • • • · • w · • • • • · ·
· · · · • · · · • · · • · · · · · • · • · ·
· • · • · • • · · · · · • · • • · • · · · ·
· · · · · · · • · • • • • · • · • • • · · ·
· · · • • · · · • · · · • · • · • · · • • ·

Figure 2: In this example, Γ = [6] × [22], B = G6,22 (as in Section 2.2.2), and the {·, •, w}-valued matrix
above encodes U = Gc (rectangles with •), where G ⊆ Γ (locations with · and w) can be interpreted as a
bipartite graph. If a semi-filter F over U is above w ∈ G (corresponding to coordinates (2, 15)), then it must
contain the distinguished subsets of U represented in blue (R2 ∩ U) and in orange (C15 ∩ U), respectively.

12

Intuitively, semi-filters will be used to produce counter-examples to the correctness of a candidate con-383

struction of a set A from B that is more efficient than D∩(A | B). This will become clear in Section 3.2.384

Definition 20 (Preservation of pairs of subsets). Let Λ = {(E1, H1), . . . , (Eℓ, Hℓ)} be a family of pairs of385

subsets of U . We say that F preserves a pair (Ei, Hi) if Ei ∈ F and Hi ∈ F imply Ei ∩Hi ∈ F . We say386

that F preserves Λ if it preserves every pair in Λ.387

We now introduce a measure of the cover complexity of A ⊆ Γ with respect to a family B ⊆ P(Γ).388

Definition 21 (Cover complexity). We let ρ(A,B) ∈ N ∪ {∞} be the minimum size of a collection Λ of389

pairs of subsets of U such that there is no semi-filter F over U that preserves Λ and is above an element390

a ∈ A (with respect to B and U).391

The definition of cover complexity considered here is with respect to semi-filters (essentially, non-zero392

monotone functions). In the context of circuit complexity, notions of cover complexity with respect to393

other types of Boolean functions (such as ultrafilters and linear functions) have been considered, yielding394

characterizations of different circuit models [Wig93]. If we ask that in every pair at least one of the sets is395

the intersection of a generator with U , we obtain characterizations of branching models [Wig95] (such as396

branching programs). In Section 4.3, we will consider the 2-dimensional cover problem with ultrafilters.397

Cover Graph of A and B. In order to get more intuition about the notion of cover complexity, consider398

an undirected bipartite graph ΦA,B = (Vpairs, Vfilters, E), where399

Vpairs
def
= {(E,H) | E,H ⊆ U},

Vfilters
def
= {F ⊆ P(U) | F is a semi-filter and F is above some a ∈ A},

and there is an edge e ∈ E connecting (E,H) ∈ Vpairs and F ∈ Vfilters if and only if F does not preserve400

(E,H). Then ρ(A,B) is the minimum number of vertices in Vpairs whose adjacent edges cover all the401

vertices in Vfilters. For convenience, we say that ΦA,B is the cover graph of A and B.402

Note that a set of vertices in Vpairs whose adjacent edges covers all of the vertices in Vfilters is also known403

as a dominating set in graph theory. Moreover, identifying vertices with their neighbourhoods, the value of404

ρ(A,B) is equivalent to the optimal value of a set cover problem.405

3.2 Discrete complexity lower bounds using the fusion method406

Theorem 22 (Fusion lower bound). Let A ⊆ Γ be non-trivial, and B ⊆ P(Γ) be a non-empty family of
generators. Then

ρ(A,B) ≤ D∩(A | B).

In other words, the cover complexity of a non-trivial set lower bounds its intersection complexity.407

Before proving the result, it is instructive to consider an example. Assume Γ = [N]× [N] and B = RN408

are instantiated as in Section 2.2.4, where we noted that D∩(G | RN) is always zero. Indeed, ρ(G,RN) = 0409

for every non-trivial G ⊆ [N] × [N], since in the corresponding cover graph ΦG,RN
the vertex set Vfilters410

is empty (observe that if a semi-filter is above some a ∈ G, then it must contain the empty set, which is411

contradictory).412

Proof. Let |B| = m and D∩(A | B) = k. Assume toward a contradiction that k < ρ(A,B). Let413

C1, . . . , Cm, Cm+1, . . . , Cm+t = A (4)

13

be an extended sequence of complexity t that generates A from B, and suppose it has intersection complexity414

k. Let U def
= Ac = Γ \ A. Recall that, by assumption, both A and U are non-empty. Consider the415

corresponding relativized sequence416

C1
U , . . . , C

m
U , Cm+1

U , . . . , Cm+t
U = ∅. (5)

This extended sequence generates the empty set from BU and has intersection complexity k. Let Λ be the417

set of intersection operations in this sequence. Note that each pair (Ci
U , C

j
U) ∈ Λ satisfies Ci

U , C
j
U ⊆ U ,418

and that |Λ| ≤ k < ρ(A,B). Let ΦA,B = (Vpairs, Vfilters, E) be the cover graph of A and B. Since Λ ⊆ Vpairs419

and |Λ| < ρ(A,B), there exists F ∈ Vfilters that is not covered by the pairs in Λ. Let a ∈ A be an element420

such that F is above a.421

We trace the construction in Equation 4 from the point of view of the element a. Let αi = 1 if and only422

if a ∈ Ci. Observe that αm+t = 1, since a ∈ A. In order to derive a contradiction, we define a second423

sequence βi that depends on the semi-filter F and on the relativized construction appearing in Equation 5.424

We let βi = 1 if and only if Ci
U ∈ F (recall that F ⊆ P(U) and Ci

U ⊆ U). Since F is a semi-filter and425

Cm+t
U = ∅, we get βm+t = 0. We complete the argument by showing that for every i ∈ [m + t], αi ≤ βi,426

which is in contradiction to αm+t = 1 and βm+t = 0.427

Claim 23. Suppose F is above a ∈ A with respect to B and U , and that F preserves Λ, the set of intersection428

operations in Equation 5. Then for every i ∈ [m+ t], αi ≤ βi.429

The proof is by induction on i. For the base case, we consider i ≤ m. Since B is non-empty, m ≥ 1.430

Now if αi = 1, then a ∈ Ci = B for some B ∈ B. Since F is above a (with respect to B and U) and a ∈ B,431

Ci
U = BU ∈ F , and consequently βi = 1. This completes the base case.432

The induction step follows from the induction hypothesis and the upward closure of F in the case of433

a union operation, and from the induction hypothesis and the fact that F preserves Λ in the case of an434

intersection operation. For instance, suppose that Ci = Ci1 ∩Ci2 and Ci
U = Ci1

U ∩Ci2
U , respectively, where435

i1, i2 < i. Assume that αi = 1. Then a ∈ Ci, and consequently a ∈ Ci1 ∩ Ci2 . Using the induction436

hypothesis, 1 = αi1 = αi2 = βi1 = βi2 . Therefore, Ci1
U ∈ F and Ci2

U ∈ F . Now using that (Ci1
U , Ci2

U) ∈ Λ437

and that F preserves Λ, it follows that Ci
U = Ci1

U ∩ Ci2
U ∈ F . In other words, βi = 1. The other case is438

similar.439

This establishes the claim and completes the proof of Theorem 22.440

3.3 Set-theoretic fusion as a complete framework for lower bounds441

In this section, we establish a converse to Theorem 22.442

Theorem 24 (Fusion upper bound). Let A ⊆ Γ be non-trivial, and B ⊆ P(Γ) be a non-empty family of
generators. Then

D∩(A | B) ≤ ρ(A,B)2.

Remark 25. It is important in the statements of Theorems 22 and 24 that the characterization of D∩(A | B)443

in terms of ρ(A,B) does not suffer a quantitative loss that depends on |B|. This allows us to apply the results444

in discrete spaces for which the number of generators in B is large compared to the size of the ambient space445

Γ, such as in graph complexity.446

Proof. Let U = Ac, let ρ(A,B) = t, and assume that this is witnessed by a family

Λ = {(H1, E1), . . . , (Ht, Et)}

14

of t pairs of subsets of U . We let

FΛ = {F ⊆ P(U) | F is a semi-filter that preserves Λ}.

Recall the definition of the cover graph ΦA,B of A and B (Section 3.1). Observe that, while Λ ⊆ Vpairs, it is447

not necessarily the case that FΛ ⊆ Vfilters.448

Claim 26. For every w ∈ Γ,

w ∈ A if and only if ∄F ∈ FΛ that is above w (w.r.t. B and U).

In order to see this, notice that if w ∈ A then indeed there is no such F ∈ FΛ, using the definitions of ρ449

and Λ. On the other hand, for w /∈ A, it is easy to check that Fw
def
= {U ′ ⊆ U | w ∈ U ′} is a semi-filter that450

preserves Λ and that is above w with respect to B and U .451

452

This claim provides a criterion to determine if an element is in A. This will be used in a construction of453

A from B showing that D∩(A | B) = O(ρ(A,B)2). The intuition is that, for a given w ∈ Γ, we must check454

if there is F ∈ FΛ that is above w with respect to B and U . In order to achieve this, we inspect the minimal455

family Gw ⊆ P(U) of sets that must be contained in any such (candidate) semi-filter.456

For every w ∈ Γ, we require Gw to be above w, upward-closed, and to preserve Λ. The rules for457

constructing Gv are simple:458

• Base case. If w ∈ B for B ∈ B, then add BU = B ∩ U to Gw, together with every set U ′ such that459

BU ⊆ U ′ ⊆ U .460

• Propagation step. If both Ei and Hi are in Gv, add Ei ∩Hi to Gv, together with every set U ′ such that461

Ei ∩Hi ⊆ U ′ ⊆ U .462

We apply the base case once, and repeatedly invoke the propagation step until no new sets are added to Gw.463

Clearly, this process terminates within a finite number of steps.464

Claim 27. For every w ∈ Γ, the empty set is added to Gw if and only if w ∈ A.465

We argue that w /∈ A if and only if ∅ /∈ Gw. Clearly, if F is a semi-filter that is above w and preserves466

Λ, we must have Gw ⊆ F . For w /∈ A, the process described above cannot possibly add ∅ to Gw, since by467

Claim 26 there is a semi-filter F ∈ FΛ that is above w, and Gw ⊆ F . On the other hand, if this process468

terminates without adding ∅ to Gw, it is easy to see that Gw is a semi-filter in FΛ that is above w, which in469

turn implies that w /∈ A via Claim 26. This completes the proof of Claim 27.470

471

We now turn this discussion into the actual construction of A from the sets in B. For convenience, we
actually upper bound D∩(A | B∪{∅}), i.e., we freely use ∅ as a generator in the description of the sequence
that generates A. This is without loss of generality due to Fact 8. Let

Ω
def
= BU ∪ {Ei}i∈[t] ∪ {Hi}i∈[t] ∪ {Hi ∩ Ei}i∈[t] ∪ {∅},

where we abuse notation and view Ω as a multi-set.9 For simplicity and in order to avoid extra terminology,472

we slightly abuse notation, and distinguish sets that are identical by the symbols representing them. This473

should be clear in each context, and the reader should keep in mind what we are simply translating the474

process that defines each Gw into a construction of A.475

9This is helpful in the argument. For instance, more than one set B ∈ B might generate an empty set BU = B ∩ U ∈ Ω, but
we will need to keep track of elements such that w ∈ B and BU = ∅.

15

Fix a set C from the multi-set Ω. For an integer j ≥ 1, we let Sj
C be the set of all w ∈ Γ that have C476

in Gw before the start of the j-th iteration (propagation step) of the process described above. (Here we also477

view the sets Sj
C as different formal objects.) We construct each set Sj

C from B ∪ {∅} by induction on j. By478

Claim 27, for a large enough ℓ ∈ N, we get Sℓ
∅ = A, our final goal.479

In the base case, i.e., for j = 1, we first set T 1
BU

= B for each BU obtained from a set B ∈ B, and480

T 1
I = ∅ for every other set I ∈ Γ. We then let481

S1
C =

⋃
C′∈Ω,C′⊆C

T 1
C′ , (6)

for each C ∈ Ω. Observe that the base case satisfies the property in the definition of the sets Sj
C .482

Assume we have constructed Sj−1
C , for each C ∈ Ω. We can construct each Sj

C from these sets as483

follows:484

T j
C = Sj−1

C ∪
⋃

{i∈[t] | C=Ei∩Hi}

(Sj−1
Ei

∩ Sj−1
Hi

), (7)

Sj
C =

⋃
C′∈Ω,C′⊆C

T j
C′ . (8)

Note that the definition of each Sj
C handles Λ-preservation and upward-closure, as in the propagation step.485

It is not difficult to show using the induction hypothesis that each set Sj
C satisfies the required property (fix486

an element w ∈ Γ, and verify that it appears in the correct sets). This completes the construction of A.487

In order to finish the proof of Theorem 24, we analyse the complexity of this construction. First, since488

each propagation step that introduces a new set to Gw adds at least one of the sets Ei∩Hi to Gw, and there are489

at most t = |Λ| = ρ(A,B) such sets, it is sufficient in the construction above to take ℓ = t+1. In particular,490

St+1
∅ = A. Finally, each propagation step (which is associated to a fixed stage j ∈ [t] of the construction)491

only employs intersection operations for sets C of the form Ei ∩Hi (in the corresponding definition of T i
C).492

Overall, among these sets, the j-th stage of the construction needs at most t intersections. To see this, note493

that sets Sj
C with C = Ei ∩ Hi are only required to inspect the corresponding sets associated with pairs494

(Ek, Hk) with k ∈ [t] such that C = Ek ∩Hk, and such pairs are disjoint among the different sets C of this495

form. (There is no need to keep more than one such C representing the same underlying set as a syntactical496

object in the construction.)497

This immediately implies that A can be generated using at most t(t + 1) intersections. However, a498

more careful inspection reveals that the last stage only needs to perform the operations corresponding to499

the upward-closure, and no new intersections are necessary. Consequently, D∩(A | B) ≤ ρ(A,B)2, which500

completes the proof.501

We take this opportunity to observe the following immediate consequence of Theorems 22 and 24. (A502

tighter relation between these measures is discussed in Section 2.3.)503

Corollary 28 (Intersection complexity versus discrete complexity).504

For every A ⊆ Γ and non-empty B, if D∩(A | B) = t then D∪(A | B) ≤ D(A | B) ≤ O(t+ |B|)3.505

Proof. If A is empty and can be constructed from B, then it can also be constructed from B using |B|506

intersections (and no union operation). If A = Γ the same is true with respect to unions. On the other507

hand, for a non-trivial A, the result follows from Theorems 22 and 24, by noticing that in the construction508

underlying the proof of Theorem 24 a total of at most O(t+ |B|)3 operations are needed.509

16

Remark 29 (The fusion method and complexity in Boolean algebras). Our presentation allows us to con-510

clude, in particular, that the fusion method provides a framework to lower bound the number of operations511

in any (finite) Boolean algebra B. Indeed, by the Stone Representation Theorem (cf. [GH08]), any Boolean512

algebra is isomorphic to a field of sets. Therefore, the problem of determining the number of ∨B and ∧B513

operations necessary to obtain a non-trivial element a ∈ B from elements b1, . . . , bm ∈ B can be captured514

via cover complexity by Theorems 22 and 24.515

3.4 An exact characterization via cyclic discrete complexity516

In this section, we show that cover complexity can be exactly characterized using the intersection com-517

plexity variant of cyclic complexity. The tight correspondence is obtained by a simple adaptation of an idea518

from [NM95].519

Theorem 30 (Exact characterization of cover complexity). Let A ⊆ Γ be non-trivial, and B ⊆ P(Γ) be a
non-empty family of generators. Then

ρ(A,B) = Dœ
∩ (A | B).

Proof. The proof that Dœ
∩ (A | B) ≤ ρ(A,B) is essentially immediate from the proof of Theorem 24. It520

is enough to observe that the construction of A from B via Λ described there can be transformed into a521

syntactic sequence for A that employs at most |Λ| intersection operations. This is similar to the example522

presented in Section 2.5.523

We establish next that ρ(A,B) ≤ Dœ
∩ (A | B). The main difficulty here is that simply unfolding the524

evaluation of the syntactic sequence introduces further intersection operations (Corollary 17), and we cannot525

rely on Theorem 22. We argue as follows.526

Let B = {B1, . . . , Bm}, and I1, . . . , It be a syntactic sequence that generates A from B using op-527

erations ⋆i, where t = Dœ(A | B). By Lemma 16, the evaluation procedure converges to a sequence528

C1, . . . , Cm, Cm+1, . . . , Cm+t = A, where Ci = Bi for i ∈ [m]. (This is not an extended sequence that529

generates A from B, since the corresponding operations are not acyclic. However, the relation between the530

sets is clear.)531

Claim 31. If Ii = Ki1 ⋆i Ki2 for i ∈ [t], then Cj = Cj′ ⋄j Cj′′ , where Cj′ and Cj′′ are the corresponding532

sets in the sequence above when j = i+m, and ⋄j ∈ {∩,∪} is the corresponding operation.533

In order to see this, recall that during the evaluation of the syntactic sequence Iℓ+1
i = Iℓi ∪ (Kℓ

i1
⋆i K

ℓ
i2
).534

Since the evaluation is monotone, and C1, . . . , Cm, Cm+1, . . . , Cm+t is the convergent sequence, we even-535

tually have Iℓ+1
i = Iℓi = (Kℓ

i1
⋆i K

ℓ
i2
). Consequently, Cj = Cj′ ⋄j Cj′′ after the indices are appropriately536

renamed.537

538

For U = Ac, let Λ def
= {(Cj′

U , Cj′′

U) | j ∈ {m + 1, . . . ,m + t} and ⋄j = ∩} be a family of pairs of539

subsets of U . In order to complete the proof, it is enough to show that Λ covers all semi-filters F ⊆ P(U)540

that are above some element a = a(F) ∈ A.541

Suppose this is not the case, i.e., there is a semi-filter F above a ∈ A such that F is not covered542

by Λ. We proceed in part as in the proof of Theorem 22. For each i ∈ [m + t], let αi ∈ {0, 1} be 1543

if and only if a ∈ Ci, and βi ∈ {0, 1} be 1 if and only if Ci
U ∈ F . We obtain a contradiction by a544

slightly different argument, which is in analogy to the proof in [NM95]. Since the operations performed over545

C1, . . . , Cm, Cm+1, . . . , Cm+t do not follow a linear order, and these sets are obtained after the convergence546

of the evaluation procedure, we employ a top-down approach, as opposed to the bottom-up presentation that547

appears in the proof of Theorem 22.548

17

We define a partition (X,Y) of the indices of the sets C1, . . . , Cm+t. Note that αm+t = 1 and βm+t = 0549

(cf. Theorem 22). Initially, X contains only the element m+ t. Now for each j ∈ X , if Cj = Cj′ ⋄j Cj′′ ,550

αj′ = 1, and βj′ = 0, then we add the element j′ to X (and similarly for the index j′′). We repeat this551

procedure until no more elements are added to X , and let Y def
= [m+ t] \X .552

We observe the following properties of this partition.553

Claim 32. We have m+ t ∈ X and {1, . . . ,m} ⊆ Y . If an element j ∈ X , then αj = 1 and βj = 0.554

The only non-trivial statement is that {1, . . . ,m} ⊆ Y . It is enough to argue that if ℓ ∈ [m] then it is555

not the case that αℓ = 1 and βℓ = 0. But since Cℓ = Bℓ ∈ B and F is above a, if α = 1 (i.e., a ∈ Cℓ) then556

β = 1 (i.e., Bℓ ∩ U ∈ F).557

Claim 33. If j ∈ X and Cj = Cj′ ⋄j Cj′′ , where ⋄j ∈ {∩,∪} is arbitrary, then either j′ ∈ X or j′′ ∈ X .558

Assume contrariwise that j ∈ X and j′, j′′ ∈ Y . First, suppose that ⋄j = ∩. Since αj = 1 and559

Cj = Cj′ ∩Cj′′ , we have αj′ = αj′′ = 1. As j′, j′′ ∈ Y , by construction, we get βj′ = βj′′ = 1 (otherwise560

one of the indices would be in X and not in Y). Consequently, by the definition of the sequence β, Cj
U /∈ F ,561

while Cj′

U , Cj′′

U ∈ F . This contradictions the assumption that Λ does not cover F . Assume now that ⋄j = ∪.562

Moreover, suppose w.l.o.g. that αj′ = 1, which can be done thanks to Cj = Cj′ ∪ Cj′′ and αj = 1. Since563

j′ ∈ Y , we must have βj′ = 1. This means that Cj′

U ∈ F , and by the monotonicity of F and ⋄j = ∪, it564

follows that Cj
U ∈ F . But this is in contradiction to βj = 0, which completes the proof of the claim.565

Claim 34. Suppose that j, j′ ∈ X , Cj = Cj′ ∪ Cj′′ , and j′′ ∈ Y . Then a /∈ Cj′′ .566

The assumptions force αj = 1 and βj = 0, and that it is not the case that αj′′ = 1 and βj′′ = 0. We must567

argue that αj′′ = 0 (i.e., a /∈ Cj′′), and to do so we show that βj′′ = 0. But if βj′′ = 1, the monotonicity of568

F and Cj = Cj′ ∪ Cj′′ imply βj = 1, a contradiction. This completes the proof of this claim.569

570

Finally, we combine these three claims, derived from the assumption that there is a semi-filter F above571

a that is not covered by Λ, to get a contradiction. Recall that C1, . . . , Cm+t = A is the convergent se-572

quence obtained from the syntactic sequence I1, . . . , It and its operations ⋆i, and that by assumption a ∈ A.573

Therefore, our proof will be complete if we can show that a /∈ Cm+t.574

In order to establish this final implication, we show the stronger statement that the element a is never575

added to a set Cj during the update steps of the evaluation procedure if j ∈ X (since m+ t ∈ X by Claim576

32), which is a contradiction. Before the first update, each such set is empty, as the only non-empty sets are577

in B, and these have indices in Y (Claim 32). During an update of the elements of a set Cj with j ∈ X ,578

we consider two cases based on ⋄j ∈ {∪,∩}. If ⋄j = ∩, Claim 33 implies that at least one of the operands579

comes from X , and thus by induction the update step will not include a in Cj . On the other hand, if ⋄j = ∪,580

Claim 33 shows that at most one operand comes from Y . If there is no operand from Y , we are done using581

the induction hypothesis. Otherwise, Claim 34 implies that a is not an element of this operand (as it is not582

in the corresponding set even after the evaluation procedure converges). By the induction hypothesis, a is583

not added to Cj . This finishes the proof of Theorem 30.584

In particular, this result shows that the k-clique lower bound discussed in [Kar93] holds in the more585

general model of cyclic Boolean circuits.586

Corollary 35 (Consequence of Theorem 30 and [Kar93]).587

Let k-clique : {0, 1}(
n
2) → {0, 1} be the function that evaluates to 1 on an undirected n-vertex input graph588

G if and only if G contains a k-clique. Then every monotone cyclic Boolean circuit that computes 3-clique589

contains at least Ω(n3/(log n)4) fan-in two AND gates.590

18

This lower bound against monotone cyclic circuits does not seem to easily follow from the proofs in591

[Raz85, AB87].592

4 Graph Complexity and Two-Dimensional Cover Problems593

4.1 Basic results and connections594

Proposition 36 (The intersection complexity of a random graph). Let G ⊆1/2 [N] × [N] be a random
bipartite graph. Then, asymptotically almost surely,

D∩(G | GN,N) = Θ(N).

Proof. The upper bound is easy, and holds in the worst case as well (see Section 2.2.2). For the lower bound,595

recall that a random graph G satisfies D(G | GN,N) = Ω(N2/ logN), which is an immediate consequence596

of Lemma 11. By Lemma 9, it must be the case that D∩(G | GN,N) = Ω(N), which completes the597

proof.598

Recall the definition of cover complexity introduced in Section 3.1. Theorem 24 and Proposition 36599

yield an Ω(
√
N) lower bound on the cover complexity of a random graph. It is possible to obtain a tight600

lower bound using a more careful argument.601

Theorem 37 (The cover complexity of a random graph). Let G ⊆1/2 [N] × [N] be a random bipartite
graph. Then, asymptotically almost surely,

ρ(G,GN,N) = Θ(N).

Proof. The proof is based on a counting argument, and can be formalized using Kolmogorov complexity.602

Observe that the proof of Theorem 24 describes a universal procedure that generates an arbitrary set A from603

B using Λ. However, for a fixed family B such as B = GN,N , the only information the procedure needs is604

the inclusion relation among the sets appearing in Λ and B. Crucially, the explicit description of the sets605

that appear in Λ is not necessary to fully specify the corresponding set A that is generated by the universal606

procedure. Indeed, observe that the core of the construction after the base case (which does not depend607

on A) are the sub-indices appearing in Equations 6, 7, and 8, which are determined by the aforementioned608

inclusion relations. These inclusions can be described by O(|Λ|(|B|+ |Λ|)) bits. Since a random graph has609

description complexity Ω(N2) and |GN,N | = 2N , we must have |Λ| = Ω(N) asymptotically almost surely.610

In other words, ρ(G,GN,N) = Ω(N) for a typical graph G ⊆ [N]× [N].611

Let N = 2n. For a graph G ⊆ [N] × [N], we let fG : {0, 1}2n → {0, 1} be the Boolean function612

associated with G, as described in Lemma 13 (in other words, f−1
G (1) = ϕ(G)).613

Proposition 38 (Reducing circuit complexity lower bounds to two-dimensional cover problems). For any
non-trivial graph G ⊆ [N]× [N],

ρ(G,GN,N) ≤ D∩(f
−1
G (1) | B2n).

Proof. This follows from Theorem 22 and Lemma 13.614

These results do not immediately imply that ρ(G,GN,N) ≤ ρ(f−1
G (1),B2n), since the connection be-615

tween D∩ and ρ might not be tight. This can be shown by a direct argument.616

Lemma 39 (A fusion transference lemma). Let G ⊆ [N]× [N] be a non-trivial graph. Then,

ρ(G,GN,N) ≤ ρ(f−1
G (1),B2n).

19

Proof. Let F↑
fG

be the set that contains a semi-filter F over f−1
G (0) if and only if it is above some element617

a ∈ f−1
G (1). Similarly, let F↑

G contain a semi-filter F over G if and only if there is (u, v) ∈ G such that618

F is above (u, v). Assume ΛfG is a family of pairs of subsets of f−1
G (0) that cover all semi-filters in F↑

fG
.619

Now let ΛG be the family of pairs of subsets of G induced by the pairs in ΛfG and the bijection between620

[N]× [N] and {0, 1}2n. We claim that ΛG covers all semi-filters in F↑
G.10

621

Recall that we identify an element (u, v) ∈ [N] × [N] with its corresponding input string ϕ(u, v) =622

binary(u)binary(v) ∈ {0, 1}2n, which for convenience we will simply denote by uv. Assume this is not623

the case, i.e., there is a semi-filter F ∈ F↑
G that is above some edge (u, v) ∈ G and preserves ΛG (in other624

words, it is not covered by ΛG). Let F ′ be the corresponding family of subsets of f−1
G (0) under ϕ. Observe625

that F ′ is a semi-filter over f−1
G (0), and that it preserves ΛfG . Therefore, in order to get a contradiction it626

is enough to verify that F ′ is above uv (with respect to the family of generators B2n ⊆ P({0, 1}2n)). This627

follows easily using the upward-closure of F and the fact that F is above the edge (u, v) with respect to628

GN,N , as we explain next.629

For instance, assume that ui = 0 for some i ∈ [n]. We must prove that the corresponding set Bc
i ∩630

f−1
G (0) ∈ F ′. From ui = 0, we get Ru ⊆ ϕ−1(Bc

i), and then Ru∩G ⊆ ϕ−1(Bc
i)∩G = ϕ−1(Bc

i ∩f−1
G (0)).631

Since F is above (u, v) with respect to GN,N , Ru ∩ G ∈ F . Consequently, ϕ(Ru ∩ G) ∈ F ′. Now632

ϕ(Ru ∩G) ⊆ ϕ(ϕ−1(Bc
i ∩ f−1

G (0))) = Bc
i ∩ f−1

G (0), and from the upward-closure of F ′, the latter set is in633

F ′. The remaining cases are similar.634

This result and Theorem 22 provide an alternative proof of Proposition 38. As we will see later in this635

section, establishing a direct connection among cover problems can have further benefits (Section 4.3).636

4.2 A simple lower bound example637

Let N = 2n. Consider the graph GNEQ ⊆ [N] × [N], where (u, v) ∈ GNEQ if and only if u ̸= v.638

Figure 3 below describes the N = 8 case. We show a tight lower bound on ρ(GNEQ,GN,N). To prove this639

result, we focus on a particular set of semi-filters. For convenience, we write G = GNEQ.640

Figure 3: A graphical representation of GNEQ ⊆ [N] × [N] for N = 8. Proposition 40 shows that for this
value of N the intersection complexity is 3.

For e ∈ G, where e = (u, v), we let Fe be the upward closure (with respect to G) of the family that
contains the sets Ru

G
and Cv

G
, where Ru

G
= Ru ∩G and Cv

G
= Cv ∩G. More explicitly, a set W is in Fe iff

Ru
G
⊆ W or Cv

G
⊆ W . Notice that, in general (i.e., for an arbitrary graph), this might not be a semi-filter,

as one of the sets might be empty. But for our choice of G, this is a semi-filter above e. We let

FG
can

def
= {Fe | e ∈ G and Fe is a semi-filter }.

10Note that the semi-filters in F↑
fG

and in F↑
G differ in their definitions of “above”, as they are connected to different sets of

generators.

20

We say that FG
can is the set of canonical semi-filters of G (above an edge of G). In general, given a bipartite641

graph G ⊆ [N] × [N], how many pairs of subsets of G are needed to cover all semi-filters in FG
can? Let642

us denote this quantity by ρcan(G,GN,N), i.e., the canonical cover complexity of G. Clearly, this quantity643

lower bounds cover complexity.644

Proposition 40. For the graph G = GNEQ defined above,

ρcan(G,GN,N) = ρ(G,GN,N) = D∩(G | GN,N) = n = logN.

Proof. The upper bound follows by transforming a circuit for the corresponding Boolean function fG : {0, 1}n×645

{0, 1}n → {0, 1} into a construction of G. Observe that fG(u, v) =
∨

i∈[n] ui ⊕ vi, where ⊕ denotes the646

parity operation, and that each ⊕-gate can be implemented using a single ∧-gate via a⊕b = (a∨b)∧(a∨b).647

Therefore, ρcan(G,GN,N) ≤ ρ(G,GN,N) ≤ D∩(G | GN,N) ≤ n via Lemma 13 and Theorem 22.648

For the lower bound on ρcan(G,GN,N), let Λ = {(E1, H1), . . . , (Ek, Hk)} be a family of k pairs of649

subsets of G. We argue that if Λ covers all semi-filters in FG
can then k ≥ n. Recall that, for every e ∈ G, Fe650

is a semi-filter above e, i.e., Fe ∈ FG
can. Fix a pair (E,H) ∈ Λ.651

Claim 41. Let e = (u, v) ∈ G, and Fe ∈ FG
can. Then Fe is covered by (E,H) if and only if each singleton652

set Ru
G

and Cv
G

is contained in precisely one of E and H , and none of the latter sets contains both of them.653

Proof of Claim 41. First, we argue that Fe is covered under the condition in the claim. Assume without loss654

of generality that Ru
G
⊆ E and Cv

G
⊆ H . Then, using the definition of Fe, we get that E ∈ Fe and H ∈ Fe.655

On the other hand, by assumption, Ru
G
⊈ E ∩H and Cv

G
⊈ E ∩H . This implies that E ∩H /∈ Fe. In other656

words, (E,H) covers Fe.657

Suppose now that (E,H) covers Fe. Then E,H ∈ Fe but E ∩ H /∈ F . It is easy to check that this658

implies the condition in the statement of Claim 41.659

Claim 41 immediately implies the following lemma.660

Lemma 42. Every semi-filter in FG
can covered by (E,H) is also covered by (E \H,H \ E).661

Thus we can and will assume w.l.o.g. that all pairs appearing in Λ have disjoint sets Ei and Hi. Using662

Claim 41 again, we obtain the following additional consequence.663

Lemma 43. Every semi-filter in FG
can covered by a disjoint pair (E,H) is also covered by the pair (E,G\E).664

Consequently, we will further assume that all pairs appearing in Λ form a partition of G. Let (E1, H1) ∈665

Λ be one such pair. Since E1 and H1 form a partition of G, either |E1| ≥ N/2 or |H1| ≥ N/2. Assume666

w.l.o.g that |E1| ≥ N/2. Let G1 ⊆ G be the subgraph of G obtained when the ambient space [N] × [N]667

is restricted to Rows(E1)× Columns(E1), where Rows(E1) = {a ∈ [N] | (a, b) ∈ E1 for some b ∈ [N]},668

and Columns(E1) is defined analogously.669

Observe that for no element e1 ∈ G1, Fe1 is covered by (E1, H1). Furthermore, the elements in G1 span670

at least 2n−1 different rows and at least 2n−1 different columns of [N]. Finally, each semi-filter Fe1 ∈ FG
can671

for e1 ∈ G1 must be covered by some pair in Λ \ {(E1, H1)}. By a recursive application of the previous672

argument, and using that in the base case n = 1 at least one pair of sets is necessary, it is easy to see673

|Λ| ≥ n = logN . This completes the proof.674

21

4.3 Nondeterministic graph complexity675

Given a Boolean function f : {0, 1}n → {0, 1}, we let size(f) be the minimum number of fan-in two676

AND/OR gates in a DeMorgan Boolean circuit computing f (we assume negations appear only at the input677

level). We can define size∨(f) and size∧(f) in a similar way. Using our notation, size(f) = D(f | Bn),678

size∨(f) = D∪(f | Bn), and size∧(f) = D∩(f | Bn).679

We also define conondet-size∧(f) to be the minimum number of ∧-gates in a circuit D(x, y) such that680

f(x) = 1 if and only if for all y we have D(x, y) = 1. Similarly, nondet-size∨(g) is the minimum number681

of ∨-gates in a circuit C(x, y) such that g(x) = 1 if and only if there exists y such that C(x, y) = 1. Observe682

that for every Boolean function h, conondet-size∧(h) = nondet-size∨(¬h).683

Observe that the definition of nondeterministic complexity for Boolean functions relies on Boolean cir-684

cuits extended with extra input variables. It is not entirely clear how to introduce a natural similar definition685

in the context of graph complexity, i.e, a nondeterministic version of D(G | GN,N). We take a different path,686

and translate an alternative characterization of nondeterministic complexity in the Boolean function setting687

(based on the fusion method) to the graph complexity setting. First, we review the necessary concepts.688

Definition 44 (Semi-ultra-filter). We say that a semi-filter F ⊆ P(U) is a semi-ultra-filter if for every set689

A ⊆ U , at least one of A or U \A is in F .690

For a function f : {0, 1}n → {0, 1}, let ρultra(f,Bn) denote the minimum number of pairs of subsets of691

f−1(0) that cover all semi-ultra-filters over f−1(0) that are above an input in f−1(1). [Kar93] established692

the following result.693

Theorem 45. There exists a constant c ≥ 1 such that for every function f : {0, 1}n → {0, 1},

ρultra(f,Bn) ≤ conondet-size∧(f) = nondet-size∨(¬f) ≤ c · ρultra(f,Bn).

Roughly speaking, a variation of cover complexity can be used to characterize conondeterministic circuit694

complexity. This motivates the following definition, which provides a notion of nondeterministic complexity695

in arbitrary discrete spaces.696

Definition 46 (Conondeterministic cover complexity). Given a discrete space ⟨Γ,B⟩ and a set A ⊆ Γ,697

we let ρultra(A,B) denote the minimum number of pairs of subsets of U = Ac = Γ \ A that cover all698

semi-ultra-filters over U that are above an element a ∈ A.699

Observe that ρultra(A,B) ≤ ρ(A,B), since every semi-ultra-filter is a semi-filter. Conondeterministic700

cover complexity sheds light into the strength of the simple lower bound argument presented in Section 4.2.701

Proposition 47. Let GNEQ ⊆ [N]× [N] be the graph defined in Section 4.2. Then,

ρcan(GNEQ,GN,N) ≤ ρultra(GNEQ,GN,N).

Proof. For convenience, let G = GNEQ. Simply observe that every semi-filter Fe in FG
can is a semi-ultra-702

filter. Indeed, for e = (u, v) ∈ G and an arbitrary set W ⊆ G, either W or G \W contains Ru
G

, since the703

latter is a singleton set due to our choice of G.704

Now we translate this result into a stronger lower bound in Boolean function complexity. This will be a705

consequence of the following lemma.706

Lemma 48 (A nondeterministic fusion transference lemma).
Let N = 2n. For every graph G ⊆ [N]× [N],

ρultra(G,GN,N) ≤ ρultra(fG,B2n),

where f : {0, 1}2n → {0, 1} is the Boolean function associated with G.707

22

Proof. Recall that, in the proof of Lemma 39 (fusion transference lemma), if a semi-filter F in the graph708

setting is not covered, then it gives rise to a semi-filter F ′ in the Boolean function setting that is not covered.709

Crucially, if the original semi-filter is a semi-ultra-filter, so is the resulting semi-filter. The proof of this fact710

is obvious, since ϕ : [N]× [N] → {0, 1}2n is a bijection.711

Let NEQ2n : {0, 1}n×{0, 1}n → {0, 1} be the function such that NEQ2n(x, y) = 1 if and only if x ̸= y,712

and EQ2n be its negation. By combining the ideas of this section and Section 4.2, we get the following tight713

inequalities.714

Corollary 49 (A simple nondeterministic lower bound via graph complexity + fusion).

n ≤ ρcan(GNEQ,GN,N)

≤ ρultra(GNEQ,GN,N)

≤ ρultra(NEQ2n,B2n)

≤ conondet-size∧(NEQ2n)

≤ nondet-size∨(EQ2n)

≤ size∨(EQ2n)

≤ size∧(NEQ2n)

≤ n.

In particular, the nondeterministic union complexity of the Boolean function EQ2n is precisely n.715

Observe that, by Theorem 30, a cyclic circuit computing NEQ2n also requires n fan-in two AND gates.716

References717

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions.718

Combinatorica, 7(1):1–22, 1987.719

[Cha94] A. V. Chashkin. On the complexity of boolean matrices, graphs, and the boolean functions720

corresponding to them. Discrete Mathematics and Applications, 4(3):229–258, 1994.721

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A722

better-than-3n lower bound for the circuit complexity of an explicit function. In Symposium on723

Foundations of Computer Science (FOCS), pages 89–98, 2016.724

[GH08] Steven Givant and Paul Halmos. Introduction to Boolean algebras. Springer, 2008.725

[GHKK16] Alexander Golovnev, Edward A. Hirsch, Alexander Knop, and Alexander S. Kulikov. On726

the limits of gate elimination. In International Symposium on Mathematical Foundations of727

Computer Science (MFCS), pages 46:1–46:13, 2016.728

[Gol18] Alexander Golovnev. Private communication, 2018.729

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Springer, 2012.730

[Juk13] Stasys Jukna. Computational complexity of graphs (book chapter). Advances in Network Com-731

plexity, Quantitative and Network Biology, pages 99–153, 2013.732

[Kar93] Mauricio Karchmer. On proving lower bounds for circuit size. In Structure in Complexity733

Theory Conference (CCC), pages 112–118, 1993.734

23

[Lok03] Satyanarayana V. Lokam. Graph complexity and slice functions. Theory Comput. Syst.,735

36(1):71–88, 2003.736

[LY22] Jiatu Li and Tianqi Yang. 3.1n - o(n) circuit lower bounds for explicit functions. In Symposium737

on Theory of Computing (STOC), pages 1180–1193, 2022.738

[NM95] Katsutoshi Nakayama and Akira Maruoka. Loop circuits and their relation to Razborov’s ap-739

proximation model. Inf. Comput., 119(2):154–159, 1995.740

[Oli18] Igor C. Oliveira. Notes on the method of approximations and the emergence of the fusion741

method. Manuscript (available online), 2018.742

[PRS88] Pavel Pudlák, Vojtech Rödl, and Petr Savický. Graph complexity. Acta Inf., 25(5):515–535,743

1988.744

[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean func-745

tions. Soviet Math. Doklady, 31:354–357, 1985.746

[Raz89] Alexander A. Razborov. On the method of approximations. In Symposium on Theory of Com-747

puting (STOC), pages 167–176, 1989.748

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,749

19(3):403–435, 1999.750

[Sch88] Claus-Peter Schnorr. The multiplicative complexity of Boolean functions. In International751

Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC),752

pages 45–58, 1988.753

[Wig93] Avi Wigderson. The fusion method for lower bounds in circuit complexity. In Combinatorics,754

Paul Erdos is Eighty, Bolyai Math. Society, pages 453–467, 1993.755

[Wig95] Avi Wigderson. Lectures on the fusion method and derandomization. Technical Report, 1995.756

[Zwi96] Uri Zwick. On the number of ANDs versus the number of ORs in monotone Boolean circuits.757

Inf. Process. Lett., 59(1):29–30, 1996.758

24

	Introduction
	Overview
	Results

	Discrete Complexity
	Definitions and notation
	Examples
	Basic lemmas and other useful results
	Transference of lower bounds
	Cyclic Discrete Complexity

	Characterizations of Discrete Complexity via Set-Theoretic Fusion
	Definitions and notation
	Discrete complexity lower bounds using the fusion method
	Set-theoretic fusion as a complete framework for lower bounds
	An exact characterization via cyclic discrete complexity

	Graph Complexity and Two-Dimensional Cover Problems
	Basic results and connections
	A simple lower bound example
	Nondeterministic graph complexity

