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Resumo

CAVALAR, B. P. Teoremas de girassol em complexidade de circuitos monótonos. 2020.
60 f. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Universidade de São Paulo,
São Paulo, 2020.

Alexander Razborov (1985) desenvolveu o método das aproximações para obter cotas inferiores
para o tamanho de circuitos monótonos que decidem se um grafo contém uma clique de uma dada
ordem. Dado um circuito monótono “pequeno”, essa técnica consiste em encontrar uma função
Booleana monótona que aproxima o circuito numa distribuição de interesse, mas comete erros de
computação nessa mesma distribuição. Para provar que tal função é de fato uma boa aproximação,
Razborov utilizou o lema dos girassóis de Erdős e Rado (1960).

Essa técnica foi aprimorada por Alon e Boppana (1987) para mostrar cotas inferiores para uma
gama muito maior de problemas computacionais monótonos. Nesse trabalho, os autores também
melhoraram o resultado de Razborov para o problema da clique, utilizando uma variação relaxada
de girassóis.

Mais recentemente, Rossman (2010) desenvolveu uma outra variação de girassóis, hoje chamada
de “girassóis robustos”, para obter cotas inferiores para o problema da clique em grafos aleatórios.
Em seguida, o conceito de girassóis robustos encontrou aplicações em várias áreas da complexidade
computacional, tais como esparsificação de DNFs, extratores de aleatoriedade e teoremas de “lifting”.
Ainda mais recente foi um resultado de impacto de Alweiss, Lovett, Wu e Zhang (2020), que mostrou
cotas melhores que a de Rossman para girassóis robustos. Esse resultado foi utilizado para obter o
progresso mais significativo na conjectura dos girassóis desde a sua origem em 1960.

Nesse trabalho, vamos mostrar como os desenvolvimentos recentes em teoremas de girassol po-
dem ser aplicados para melhorar cotas inferiores para circuitos monótonos. Em particular, vamos
mostrar a melhor cota inferior para um circuito monótono obtida até o momento, quebrando um
recorde de 20 anos obtido por Harnik e Raz (2000). Iremos também melhorar a cota inferior de Alon
e Boppana para a função clique numa faixa levemente mais restrita de tamanhos de clique. Esses
resultados foram elaborados numa colaboração do aluno com Benjamin Rossman e Mrinal Kumar,
durante uma visita à Universidade de Toronto, e um resumo foi aceito na conferência LATIN 2020.

Palavras-chave: complexidade computational, complexidade de circuitos, complexidade de cir-
cuitos monótonos, combinatória, combinatória extremal, girassóis, combinatória probabilistica, teo-
ria extremal dos conjuntos
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Abstract

CAVALAR, B. P. Sunflower theorems in monotone circuit complexity. 2020. 60 f. Disser-
tação (Mestrado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,
2020.

Alexander Razborov (1985) developed the approximation method to obtain lower bounds on the
size of monotone circuits deciding if a graph contains a clique. Given a “small” circuit, this technique
consists in finding a monotone Boolean function which approximates the circuit in a distribution of
interest, but makes computation errors in that same distribution. To prove that such a function is
indeed a good approximation, Razborov used the sunflower lemma of Erdős and Rado (1960).

This technique was improved by Alon and Boppana (1987) to show lower bounds for a larger
class of monotone computational problems. In that same work, the authors also improved the result
of Razborov for the clique problem, using a relaxed variant of sunflowers.

More recently, Rossman (2010) developed another variant of sunflowers, now called “robust
sunflowers”, to obtain lower bounds for the clique problem in random graphs. In the following years,
the concept of robust sunflowers found applications in many areas of computational complexity,
such as DNF sparsification, randomness extractors and lifting theorems. Even more recent was the
breakthrough result of Alweiss, Lovett, Wu and Zhang (2020), which improved Rossman’s bound
on the size of hypergraphs without robust sunflowers. This result was employed to obtain the most
significant progress on the sunflower conjecture since its inception in 1960.

In this work, we will show how the recent progresses in sunflower theorems can be applied
to improve monotone circuit lower bounds. In particular, we will show the best monotone circuit
lower bound obtained up to now, thus breaking a 20-year old record of Harnik and Raz (2000).
We will also improve the lower bound of Alon and Boppana for the clique function in a slightly
more restricted range of clique sizes. These results were obtained in a collaboration of the student
with Benjamin Rossman and Mrinal Kumar, during a visit to the University of Toronto, and an
extended abstract was accepted to the LATIN 2020 conference.

Palavras-chave: computational complexity, circuit complexity, monotone circuit complexity, com-
binatorics, extremal combinatorics, sunflowers, probabilistic combinatorics, extremal set theory
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Chapter 1

Introduction

1.1 Computational complexity

The main goal of computational complexity is to understand the amount of computational
resources needed to complete a computational task in a variety of computational models. Arguably,
the most famous question in this area is P vs. NP, which asks whether any decision problem
that can be solved by a polynomial-time nondeterministic Turing machine can also be solved by a
deterministic polynomial-time Turing machine. A computational model that is very prominent in
computational complexity is that of the Boolean circuit, which we define below.

In circuit complexity, the main goal is to prove that Boolean circuits computing a given Boolean
function must be “complex“ with respect to some circuit parameter, such as size and depth. Proving
such lower bounds for general circuits has proved to be difficult, and results in full generality are
usually weak. Indeed, since any polynomial-time algorithm can be implemented by a sequence of
polynomial-size circuits (one for each input length), obtaining a superpolynomial lower bound on
the minimum circuit size of any problem in NP is enough to separate P from NP1, which seems far
out of reach for current techniques. For this reason, much of the research in circuit complexity has
focused in restricted classes of circuits. One of the most important such classes is that of monotone
circuits, the main circuit model we will study in this work.

1.2 Monotone circuits

For x, y ∈ {0, 1}n, we write x 6 y whenever xi 6 yi for all i ∈ [n]. A Boolean function
f : {0, 1}n → {0, 1} is said to be monotone if, for all x, y ∈ {0, 1}n such that x 6 y, we have f(x) 6
f(y). A monotone Boolean circuit is a Boolean circuit without negation gates (NOT). One readily
sees that any Boolean function computed by a monotone circuit has to be monotone; moreover,
every monotone function can be computed by a monotone circuit. The monotone complexity of a
monotone Boolean function is defined as the size of the smallest monotone circuit that computes
the function.

There are many natural monotone Boolean functions that have been widely studied in complex-
ity theory. One such function is Majority : {0, 1}n → {0, 1}, which accepts an input if the majority
of its bits are equal to one. Importantly, the majority function is known to be computable by
polynomial-size monotone formulas [AKS83]. Another monotone Boolean function of major impor-
tance is Clique(n, k) : {0, 1}(

n
2) → {0, 1}, which accepts a graph (given by its adjacency matrix) if

and only if it contains a clique of size k. It is well known that computing Clique(n, k) (i.e.: deciding if,
given a graph G and a number k, the graph G contains a k-clique) is a NP-complete problem. The
first superpolynomial lower bound on the monotone complexity of any monotone Boolean function
was obtained for Clique(n, k) in a seminal work by Razborov [Raz85b].

1See, for instance, Chapter 6 of [AB09].
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2 INTRODUCTION 1.4

1.3 The approximation method and sunflowers

Razborov’s approach inaugurated a technique which came to be known as the approximation
method. Given a monotone circuit C of “small size“, it consists into constructing gate-by-gate, in
a bottom-up fashion, another circuit C̃ that approximates C on a distribution of interest. One
then exploits the structure of this approximating circuit to prove that it differs from Clique(n, k)
under the same distribution, thus implying that no ”small“ circuit can compute this function. For
monotone circuit lower bounds, showing that C̃ does indeed approximate C is usually the hardest
part, involving the use of a combinatorial lemma – which, in the case of [Raz85b], was the sunflower
lemma of Erdős and Rado [ER60].2

This technique was leveraged to obtain lower bounds for a host of other monotone problems by
Alon and Boppana [AB87]. In that work, the authors also improve Razborov’s lower bound on the
clique function by showing that it requires monotone circuits with exponential size. Their technical
contribution is to employ a weaker notion of “sunflowers”, proving a better corresponding bound.

Another type of sunflowers, called robust sunflowers, was developed by Rossman [Ros14] with
the purpose of achieving better lower bounds for Clique(n, k) in the regime when k is constant
and the distribution is morally the Erdős-Rényi random graph. A recent breakthrough of Alweiss,
Lovett, Wu and Zhang [ALWZ19] significantly improved the upper bound on the size of uniform
families without robust sunflowers, implying also better bounds for the standard sunflower of Erdős
and Rado. A simpler proof with a slight improvement was given by Rao [Rao20].

1.4 Our contribution

In this work, we will show how these recent developments in sunflower theorems lead to better
monotone circuit lower bounds. To make our presentation self-contained, we will first survey the
main sunflower-type theorems and their proof techniques in Chapter 3, and we will give a full proof
of the sunflower breakthrough [ALWZ19, Rao20] in Chapter 4.

In Chapter 5, we will switch gears to monotone circuit complexity, and we will see how variants
of sunflowers help in the construction of good approximators. Our presentation is general enough
to accommodate many applications of the approximation method, including all those of [Raz85b,
Raz85a, AB87]. We will also introduce a novel notion of abstract sunflowers, which generalizes the
notion of robust sunflowers to arbitrary distributions.

Finally, we will apply the general framework of Chapter 5 to specific problems in monotone
circuit complexity. In particular, we will prove in Chapter 6 the best monotone circuit lower bound
to-date, beating a 20 years old record of Harnik and Raz [HR00], and we will improve Alon and
Boppana’s [AB87] bound for the clique function in Chapter 7. The combinatorial heart of Chapter 6
will be the improved sunflowers bounds of [ALWZ19, Rao20], whereas in Chapter 7 we will introduce
and prove bounds for a novel notion of clique sunflowers, tailored specifically for the clique problem.

These results appeared in a joint work of the author with Benjamin Rossman and Mrinal
Kumar, carried out during a visit of the author to the University of Toronto and published in the
LATIN 2020 conference [CKR20].

2As a side note, the approximaton method was also used by Razborov to prove that Majority cannot be com-
puted by bounded-depth circuits with parity gates [Raz87]. However, in this case the approximators were low-degree
polynomials.



Chapter 2

Definitions and Preliminaries

We will present in this chapter basic definitions, notation and results that are going to be used
throughout the thesis.

2.1 Basic notation

For a positive integer n, we let [n] := {1, 2, . . . , n}. The function log(·) denotes the natural
logarithm. Given a set Γ, we denote by 2Γ the family of the subsets of Γ. For a positive integer
`, we denote by

(
Γ
`

)
the family of the subsets of Γ with size `, and

(
Γ
6`

)
denotes the family of the

subsets of Γ with size at most `. Given a proposition P , we will write Ind[P ] to denote the indicator
function of P , which assumes value 1 if P is true and 0 otherwise. For example, the expression
Ind[x ∈ Γ] is equal to 1 if and only if x ∈ Γ. When a base set Γ is fixed and A ⊆ Γ, we denote by
Ac the complement of A on Γ. Given a set family F , we denote by

⋂
F the intersection

⋂
F∈F F .

2.1.1 Fields and polynomials

Let p be a prime number. We denote by Fp the finite field of order p. Moreover, we write Fp[x]
to denote the set of all univariate polynomials over the field Fp.

2.2 Combinatorics and probability

2.2.1 Hypergraphs and set systems

A hypergraph H is a pair of sets (Γ, E) such that E ⊆ 2Γ. A hypergraph H = (Γ, E) is said to be
`-uniform if E ⊆

(
Γ
`

)
. An element of Γ is called a vertex of G, and an element of E is called an edge

of G. We may also call Γ the vertex set of H, and E the edge set of H. When the vertex and edge
sets of a hypergragh H are not explicitly defined, we will denote the vertex set of H by V (H), and
the edge set by E(H).

If the vertex set of a hypergraph H is a set Γ, we will often identify H with its edge set and
write H ⊆ 2Γ to denote that V (H) = Γ. This means that, when we write e ∈ H, we formally mean
e ∈ E(H). In such cases, we may also write that H is a hypergraph on Γ, or, equivalently, that H
is set system on Γ or a set family on Γ.

Given two hypergraphs F and H, we say that F is a subhypergraph of H if V (F) ⊆ V (H) and
E(F) ⊆ E(H). Furthermore, for a set S ⊆ V (H), we denote by H[S] the hypergraph satisfying
V (H[S]) = S and E(H[S]) = {E ∈ H : E ⊆ S}. We say that H[S] is the subhypergraph of F
induced by S.

A set I ⊆ V (H) is said to be independent in a hypergraph H if there does not exist e ∈ E(H)
such that e ⊆ I.

For a set A ⊆ V (H), we define the degree dH(A) of A in the hypergraph H in the following way:

dH(A) := |{e ∈ E(H) : A ⊆ e}| .

3



4 DEFINITIONS AND PRELIMINARIES 2.2

We will use the shorthand dH(v) := dH({v}) for v ∈ V (H). We also define the t-degree ∆t(H) of H
as

∆t(H) := max {dH(A) : A ⊆ V (H), |A| = t} .

2.2.2 Graphs

A graph is a 2-uniform hypergraph. A subgraph H of G is a graph such that E(H) ⊆ E(G). A
clique on G is a subgraph H of G for which there exists a set K ⊆ V (G) such that E(H) =

(
K
2

)
.

In this case, when |K| = k, we say that H is a k-clique of G.
In the context of graphs, it will often be convenient to let [n] be the vertex set. We then let Gn

be the set of all graphs with vertex set [n]. We identify a graph with vertex set [n] with its set of
edges, so that Gn = 2([n]

2 ).

2.2.3 Distributions

We will consistently write random objects using boldface symbols. For a set Γ and p ∈ [0, 1], we
write W ⊆p Γ to denote that W is a random subset of Γ such that every element of Γ is contained
in W independently with probability p. In this case, we say that W follows a p-biased distribution.

An important example of this distribution is the Erdős-Rényi random graph G(n, p), defined as
follows. Given a function p : N → [0, 1], we denote by G(n, p) the random graph with vertex set
equal to [n] which satisfies E(G) ⊆p

(
[n]
2

)
, for G ∼ G(n, p).

When W ⊆p Γ for some p : N→ [0, 1] and A = A(n) is a sequence of events on this probability
space, we say that A holds with high probability if limn Pr[A] = 1. A function of the form p : N →
[0, 1] will be called a probability function or probability sequence.

We will write W ∼ U (Γ) to denote that W is chosen uniformly at random from a set Γ. For a
positive integer M > 0, we will also write W ⊆M Γ as a shorthand for W ∼ U

((
Γ
M

))
. In this case,

we say that W follows a M -uniform distribution or a M -slice distribution.
Given an arbitrary distribution µ, its support, denoted by supp(µ), is the set of all ω ∈ Ω such

that Prx∼µ[x = ω] > 0.

2.2.4 Inequalities

Here we state a few inequalities of probability theory that we are going to use frequently. The
first three are standard.

Proposition 2.2.1 (Union bound). Let A be a finite collection of events. We have

Pr

[ ⋃
A∈A

A

]
6
∑
A∈A

Pr[A].

Proposition 2.2.2 (Markov’s inequality). Let X be a random variable and a > 0. We have

Pr[X > a] 6
E[X]

a
.

Proposition 2.2.3 (Jansen’s inequality). Let f : R → R be a convex function and let X be a
random variable taking values in R. We have

E[f(X)] > f(E[X]).

The following inequality was proved in [Jan90]. A proof of it can be found as Theorem 2.18
in [JŁR00].
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Lemma 2.2.4 (Janson’s inequality). Let F be a nonempty hypergraph on Γ and let W ⊆p Γ. Define
µ and ∆ in the following way:

µ :=
∑
F∈F

Pr[F ⊆W],

∆ :=
∑

F,H∈F
F∩H 6=∅

Pr[F ∪H ⊆W].

Then we have
Pr[W is independent in F ] 6 exp{−µ2/∆}.

2.2.5 Probability thresholds

Fix a finite set Γ and let F ⊆ 2Γ. We say that F is a monotone property if A ∈ F and A ⊆ B
implies B ∈ F . Equivalently, we can say that F is monotone if and only if the Boolean function
Ind[· ∈ F ] is monotone. (See Section 2.3.4 for monotone Boolean functions.)

Let now Γ = Γ(n) be a sequence of sets, and let F = F(n) ⊆ 2Γ be a sequence of monotone
properties. Let moreover p̂ = p̂(n) be a probability sequence. We say that p̂ is a probability threshold
for the property F if the following holds for every probability function p = p(n):

lim
n

Pr
W⊆pΓ

[W ∈ F ] =

{
0 if p� p̂,

1 if p� p̂.

The following is a fundamental fact about probability threshold functions, due to Bollobás and
Thomason.

Theorem 2.2.5 ([BT87]). Every monotone property has a probability threshold.

2.2.6 A construction of c-wise independent random variables

A set of random variables X is called c-wise independent if every subset of X of at most c random
variables is mutually independent. We now describe a construction of c-wise random variables due
to Alon, Babai and Itai [ABI86].

Fix a prime q and let c be a positive integer such that c 6 q. Let Ω be the set of polynomials in
Fp[x] of degree at most c−1. It is easy to see that |Ω| = qc. Let P be a polynomial chosen uniformly
at random from Ω, and define the random variables Xi := P(i) for every i ∈ [q]. We claim that
these random variables are uniform in Fq and that they are c-wise independent. This follows from
the following simple observation about linear systems over Fq: for ` ∈ [c], any such system of `
linear equations with c variables has exactly qc−` solutions. From this we can easily show both the
uniformity and c-wise independence of the random variables X1, . . . ,Xq.

2.3 Computational complexity

2.3.1 Posets and lattices

A pair (P,6) where P is a set and 6 is a relation on P is said to be a partially ordered set
(abbreviated as poset) if, for all a, b and c ∈ P , we have

1. a 6 a (reflexivity);

2. a 6 b and b 6 a implies a = b (antisymmetry);

3. a 6 b and b 6 c implies a 6 c (transitivity);
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If for every a, b ∈ P there exists an unique supremum and un unique infimum, we say that P is a
lattice. A closure operator in a poset (P,6) is a function cl : P → P such that

1. x 6 cl(x) (extensive);

2. x 6 y =⇒ cl(x) 6 cl(y) (increasing);

3. cl(cl(x)) = cl(x) (idempotent).

2.3.2 Boolean functions

A very important lattice is the lattice Bool(Γ) of all Boolean functions f : 2Γ → {0, 1}, ordered
by the following relation: we say that f, g ∈ Bool(Γ) satisfy f 6 g if f(X) 6 g(X) for all X ∈ 2Γ.
The supremum of this lattice correponds to the logical OR (∨) and the infimum corresponds to the
logical AND (∧).

For each γ ∈ Γ, the function xγ ∈ Bool(Γ) is defined as xγ(X) = Ind[γ ∈ X]. For each S ⊆ Γ,
the function 1S ∈ Bool(Γ) is defined as 1S(X) = Ind[S ⊆ X].

2.3.3 Circuit complexity

For every finite set Γ, a Γ-input, single-output {∨,∧,¬}-Boolean circuit is a directed acyclic
graph with |Γ| sources and one sink. The sources are called inputs, and each element of Γ is the
label of one input. All nonsource vertices are called gates and are labeled with one of {∨,∧,¬}. The
vertices labeled with ∨ and ∧ have fan-in (that is, in-degree) equal to 2. The vertices labeled with
¬ always have fan-in 1 and are called negation gates. The size of a circuit C, denote by size(C),
is the number of gates it contains. Given a set X ⊆ Γ, then the the output of C in X, defined by
C(X), is defined in a natural way. We say that C computes a Boolean function f : 2Γ → {0, 1} if
C(X) = f(X) for all X ⊆ Γ. We define the circuit complexity of f , denoted by Csize(f), as the size
of the minimum circuit computing f .

Since a circuit C is a directed acyclic graph, it admits a topological ordering of its vertices. In
other words, it is possible to arrange the vertices of C in a sequence x1, x2, . . . , xn, f1, f2, . . . , fs
where each xi is an input of C and each fj is a gate of C, such that either fj = f` ◦ fk for `, k < j
and ◦ ∈ {∨,∧} or fj = ¬fk for k < j. Such a sequence is called a straight-line program for C.

2.3.4 Monotone circuit complexity

A Boolean function f : 2Γ → {0, 1} is said to be monotone if, for all X,Y ∈ 2Γ such that
X ⊆ Y , we have f(X) 6 f(Y ). We also let MonBool (Γ) ⊆ Bool(Γ) denote the sublattice of
monotone Boolean functions. A set X ⊆ Γ is said to be a minterm of f ∈ MonBool (Γ) if f(X) = 1
but f(Y ) = 0 for all Y ( X.

A monotone Boolean circuit is a Boolean circuit without negation gates, or, equivalently, an
{∨,∧}-circuit. One readily sees that any Boolean function computed by a monotone circuit has
to be monotone; moreover, every monotone function can be computed by a monotone circuit. The
monotone complexity of a monotone Boolean function f , denoted by Cmon(f), is defined as the size
of the smallest monotone circuit that computes the function.



Chapter 3

Sunflower theorems

Throughout this chapter, we will fix a finite set Γ, which we call base set, and we will always
denote the size of Γ by n.

3.1 The standard sunflower lemma of Erdős and Rado

The celebrated sunflower lemma of Erdős and Rado asserts that, in every sufficiently large
uniform family of sets, there exists a sub-family with a highly regular structure which we call
“sunflower”.

Definition 3.1.1. A family F of subsets of Γ is called a sunflower if there exists a set Y such that
F1 ∩ F2 = Y for every F1, F2 ∈ F such that F1 6= F2. The sets F \ Y for F ∈ F are called petals
and the set Y =

⋂
F is called the core.

The formal statement of the sunflower lemma of Erdős and Rado is as follows.

Theorem 3.1.2 (Erdős and Rado [ER60]). Let F be a family of subsets of Γ, each of cardinality
at most `. If |F| > `!(r − 1)`, then F contains a sunflower of r petals.

We include here the proof of Theorem 3.1.2 for completeness. Before proceeding with the proof,
we need a definition.

Definition 3.1.3. For a family F ⊆ 2Γ and a set T ⊆ Γ, the link of T at F is defined as

FT := {F \ T : F ∈ F , T ⊆ F} .

Remark 3.1.4. We have |FT | = dF (T ).

Proof of Theorem 3.1.2. The proof is by induction on `. When ` = 1, we have that F has r disjoint
sets, which is a sunflower of r petals. Suppose then that ` > 2. The proof is now divided in two
cases.

Case 1: There exists an element v ∈ Γ such that d(v) > (`− 1)!(r − 1)`−1. In this case, we are
done: by induction, F{v} has a sunflower of r petals F ′; therefore, the collection {F ∪ {v} : F ∈ F ′}
is a sunflower in F .

Case 2: For all v ∈ Γ, we have d(v) 6 (`−1)!(r−1)`−1. LetM be a maximal disjoint subfamily
of F and let S :=

⋃
M. SinceM is a sunflower, it suffices to show that |M| > r. Observe first that

|S| 6 |M| · `. SinceM is maximal, we have moreover that every set of F intersects S. Therefore,
by averaging there exists an element v ∈ S such that d(v) > |F| /(|M| · `). This implies

`!(r − 1)`

|M| · `
< d(v) 6 (`− 1)!(r − 1)`−1,

from which we get |M| > r − 1. This concludes the proof.

7
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In what has become one of the most important conjectures of extremal combinatorics, Erdős
and Rado conjectured [ER60] that one can remove the `! factor above, perhaps replacing (r − 1)`

by poly(r)`.

Conjecture 3.1.5. There exists a polynomial c = c(r) such that the following holds. Let F be a
family of subsets of Γ, each of cardinality at most `. If |F| > c(r)`, then F contains a sunflower of
r petals.

A recent breakthrough of Alweiss, Lovett, Wu and Zhang [ALWZ19] showed that the statement
above is true if we replace c = c(r) by c = c(r, log `), where c(r, log `) is roughly r · log `. Eliminating
this log ` factor would thus solve the conjecture. We will show a simpler proof of their result due
to Rao [Rao20] in Chapter 4, and we will show how their arguments can be used to improve the
state-of-the-art monotone circuit lower bounds in Chapters 6 and 7. See Sections 3.3 and 3.4 for
more details.

Theorem 3.1.2 was used by Razborov [Raz85b] to prove a lower bound of nΩ(k) on the size of
monotone circuits computing Clique(n, k) when k 6 log n, by using his method of approximations.
This shows a superpolynomial lower bound for the clique problem when k = log n, but not yet
exponential. Further progress in clique lower bounds was achieved by Alon and Boppana [AB87],
who proved a lower bound of nΩ(

√
k) when k 6 n2/3−o(1). Though this lower bound is asymptotically

worse for k 6 log n, it provides an exponential lower bound for the clique problem when k =
n2/3−o(1). Their lower bound also followed the method of approximations of Razborov, but made
use of a different notion of sunflowers, which we introduce in the next section.1

3.2 The lopsided sunflower of Alon and Boppana

Alon and Boppana [AB87] developed another notion of sunflower, in the context of proving lower
bounds for monotone circuits. It was also applied recently by Ramamoorthy and Rao [NRR18] to
prove data structure lower bounds (it appears there with the name “flower”). This definition relaxes
the notion of “core” of the standard sunflower of Erdős and Rado, and we call it lopsided sunflower.
An almost identical notion appears in Füredi [Für80] and Andreev [And85] (See Jukna [Juk11,
Chapter 6]).

Definition 3.2.1. We say that F ⊆ 2Γ is a lopsided sunflower if there exists a set Y ⊆ Γ such that

1. F1 ∩ F2 ⊆ Y for every F1, F2 ∈ F such that F1 6= F2;

2. there exists F ∈ F such that Y ( F .

The set Y is called the core and the sets F \ Y for F ∈ F are called petals.

Clearly, every sunflower of size at least 2 is a lopsided sunflower. In their article, Alon and
Boppana also proved an upper bound on the size of set systems without a lopsided sunflower. We
include their proof for completeness. First, we need a definition which shares some similarities with
that of the link in the previous section.

Definition 3.2.2. Let F be a family of subsets of Γ and fix sets C,D such that C ⊆ D ⊆ Γ. The
touch of F at C with respect to D is defined as

F (D)
C := {F \ C : F ∈ F , F ∩D = C} .

Theorem 3.2.3 (Alon and Boppana [AB87]). Fix ` > 1 and r > 2. Let F be a family of subsets of
Γ, each of cardinality at most `. If |F| > (r − 1)`, then F contains a lopsided sunflower of size r.

1It is worthy of note that, sometime later, a survey due to Boppana and Sipser [BS90] presented a lower bound
of nΩ

√
k for the Clique(n, k) problem when k 6 n1/4−o(1), making use of the Erdős-Rado sunflower lemma instead of

the relaxed version of Alon and Boppana.
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Proof. The proof is by induction on r. If r = 2, then |F| > (r− 1)` implies that F has at least two
sets F1, F2. The set Y := F1 ∩ F2 satisfies the definition of a core for the family {F1, F2}.

Now suppose the result holds for r − 1. Fix any set D ∈ F . We consider two cases, as in the
proof of Theorem 3.1.2.

Case 1. There exists a set C ⊆ D such that
∣∣∣F (D)

C

∣∣∣ > (r − 2)`−|C|. By induction F (D)
C has a

lopsided sunflower F ′ of size r − 1. It is not hard to check that {F ∪ C : F ∈ F ′} ∪ {D} ⊆ F is a
lopsided sunflower of size r contained in F .

Case 2. For all C ⊆ D, we have
∣∣∣F (D)

C

∣∣∣ 6 (r − 2)`−|C|. Therefore, we get

|F| 6
∑
C⊆D

∣∣∣F (D)
C

∣∣∣ 6 ∑
C⊆D

(r − 2)`−|C| 6
|D|∑
k=0

(
|D|
k

)
(r − 2)`−k 6

∑̀
k=0

(
`

k

)
(r − 2)`−k = (r − 1)`.

This is a contradiction which finishes the proof.

Alon and Boppana also showed that this result is as good as possible. In particular, they showed,
for every `, the existence of `-uniform set systems of size (r − 1)` without any lopsided sunflower
with r petals. Their construction is as follows. Let S1, . . . , S` be disjoint sets, and let F be the
family of all sets {s1, . . . , s`} such that si ∈ Si. Clearly, we have |F| = (r − 1)`. It suffices now
to show that F does not contain a lopsided sunflower of size r. Let F1, . . . , Fr be any r sets from
F . Suppose there exists a set Y such that, for some i ∈ Γ, we have Y ( Fi. Then there exists
j ∈ [`] such that Y ∩ Sj = ∅. Moreover, by the pigeonhole principle, there exists Fk and F` such
that Fk ∩F` ∩Sj 6= ∅. This implies that Fk ∩F` 6⊆ Y , which means that F1, . . . , Fr is not a lopsided
sunflower.

Fact 3.2.4 ([AB87]). There exists an `-uniform family F of size (r− 1)` which does not contain a
lopsided sunflower of size r. In other words, Theorem 3.2.3 is optimal.

3.3 The robust sunflower of Rossman

The notion of robust sunflowers was introduced by Rossman [Ros14] in the context of proving
better bounds for the average-case monotone complexity of Clique(n, k) on random graphs. Robust
sunflowers found applications not only in monotone circuit complexity, but also in DNF sparsifi-
cation [GMR13] randomness extractors [LLZ18], and lifting theorems [LMZ20, MP20]. We will see
further in this section how a recent breakthrough in robust sunflower bounds [ALWZ19, Rao20]
was used to improve the Erdős-Rado sunflower bounds, and we will see in Chapter 6 a result of the
author and his coauthors which improves decades-old records in monotone circuit lower bounds by
employing these new robust sunflower bounds.

Robust sunflowers were first called quasi-sunflowers, not only in [Ros14] but also in in [GMR13,
LLZ18, LSZ19]. Later, they were called approximate sunflowers in [LZ19] and finally robust sun-
flowers in the breakthrough work of Alweiss, Lovett, Wu and Zhang [ALWZ19]. We will adopt this
later terminology in this work. Before giving the formal definition of robust sunflowers, we first need
an auxiliary definition.

Definition 3.3.1. A family F ⊆ 2Γ is said to be (p, ε)-satisfying if

Pr
W⊆pΓ

[W is independent in F ] < ε.

Equivalently, it holds for the Boolean function DF :=
∨
F∈F 1F that

Pr
W⊆pΓ

[DF (W) = 1] > 1− ε.
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Definition 3.3.2. A family F ⊆ 2Γ is called a (p, ε)-robust sunflower if the family of petals
{F \ Y : F ∈ F} is (p, ε)-satisfying, where Y :=

⋂
F is called the core. Equivalently, we have

Pr
W⊆pΓ

[W ∪ Y is independent in F ] < ε.

The significance of this definition can be best understood by comparing it to the standard
sunflower of Erdős and Rado, which we do in the next section.

3.3.1 Connections to the sunflower of Erdős and Rado

Depending on the choice of parameters for p and ε, robust sunflowers can be seen either as a
generalized or more restricted version of sunflowers. The following facts illustrate this observation.

Fact 3.3.3 (Remark 4.3 of [Ros14]). Every `-uniform sunflower of size r is a (p, e−rp
`
)-robust

sunflower.

Proof. Let F ⊆
(

Γ
`

)
be a sunflower of size r with core Y . Let W be a p-random subset of Γ. We

have

Pr
W⊆pΓ

[W ∪ Y is independent in F ] = Pr
W⊆pΓ

[∀F ∈ F : F \ Y 6⊆W]

=
∏
F∈F

(1− p|F |−|Y |)

6 (1− p`)r

6 exp{−rp`}.

Fact 3.3.3 shows that, in a sense, robust sunflowers are a generalization of sunflowers 2. Indeed, as
a direct consequence of this fact, one obtains from Theorem 3.1.2 that every `-uniform set system
with size larger than `!(log(1/ε)/p`)` contains a (p, ε)-robust sunflower. It is possible to prove
results that are better than a conversion from sunflower bounds, as we shall see in a theorem due to
Rossman (Theorem 3.3.9) and its improvement due to Alweiss, Lovett, Wu and Zhang [ALWZ19].

At the same time, as observed by Lovett, Solomon and Zhang [LZ19], one cannot improve robust
sunflower bounds indefinitely without also improving standard sunflower bounds. By showing that
robust sunflowers with appropriate parameters contain a standard sunflower, the following fact
shows that robust sunflowers are, in a sense, more “robust” than standard sunflowers – thus justifying
the change of the name from “approximate” to “robust” sunflowers.

Fact 3.3.4 ([LZ19]). Every (1/r, 1/r)-robust sunflower contains a sunflower of size r.

Proof. Let F ⊆ 2Γ be an (1/r, 1/r)-robust sunflower with core Y . Let c : Γ→ [r] be an r-coloring
of Γ chosen uniformly at random. For every i ∈ [r], let Wi := c−1(i), and observe that every Wi is
a (1/r)-random subset of Γ. Therefore, for every i ∈ [r] we have

Pr [Wi ∪ Y is independent in F ] < 1/r.

By the union bound, we get that the probability that Wi ∪ Y is an independent set in F for all
i ∈ [r] is smaller than 1. This means that there exists a coloring c such that, for every i ∈ [r], there
exists a set Fi ∈ F such that Fi \ Y ⊆Wi. Since the sets Wi are disjoint (they form a partition of
Γ) and Y ⊆ F1 ∩ · · · ∩ Fr, we get that the sets F1, F2, . . . , Fr ∈ F form a sunflower with r petals
and core Y .

The facts above can be easily summarized in a chain of inequalities, by considering the following
extremal numbers.

2This is why they were first called quasi-sunflowers and approximate sunflowers.
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Definition 3.3.5. Let fR(`, p, ε) be the positive integer such that any `-uniform set family with size
larger than fR(`, p, ε) contains a (p, ε)-robust sunflower and let ER(`, r) be such that any `-uniform
set family with size larger than ER(`, r) contains a sunflower of size r.

The facts above give us:

fR(`, p, e−rp
`
) 6 ER(`, r) 6 fR(`, 1/r, 1/r). (3.1)

Applying the Erdős-Rado sunflower lemma, the first inequality can be rewritten in terms of ε as
follows:

fR(`, p, ε) 6 ER(`, log(1/ε)/p`) 6 `!(log(1/ε)/p`)` (3.2)

3.3.2 A bound due to Rossman

As we mentioned above, the first bound obtained for robust sunflowers came in a work due
to Rossman [Ros14]. As we shall see, this bound considerably improves upon the bound given by
inequality (3.2), which is crucial for its original application in monotone circuit lower bounds. Here
we give its statement and full proof. The proof will follow the same structure of the Erdős-Rado
sunflower lemma, with the difference that we will need Janson’s inequality.

First, building upon the definition of a link of a family of sets (Definition 3.1.3) we will define
“well-spread” sets.

Definition 3.3.6. Let r = (r0, r1, . . . , r`−1) be a sequence of real numbers. We say that a `-uniform
family F is r-well-spread if ∆t(F) 6 r`−t for all t ∈ [`].

In order to give Rossman’s proof in its full strength, we will also need to define a sequence of
polynomials s`(t). Rossman’s proof will then give us fR(`, p, ε) 6 s`(log(1/ε))/p`.

Definition 3.3.7. Let s0(t), s1(t), . . . be the sequence of polynomials defined by

s0(t) := 1 and s`(t) := t
`−1∑
j=0

(
`

j

)
sj(t).

This definition and the following proposition are given explicitly in an unpublished note due to
Rossman [Ros19], though a weaker form of the upper bound appears implicitly in [Ros14].

Proposition 3.3.8 ([Ros19]). For all t > 0, we have

`!t` 6 s`(t) 6 `!(t+ 1/2)`.

Proof. For the lower bound, note that

s`(t) > t`
∏̀
j=1

(
j

j − 1

)
= t``!.
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For the upper bound, we first prove by induction on ` that s`(t) 6 `!(log(1/t+ 1))−`, as follows:

s`(t) = t

`−1∑
j=0

(
`

j

)
sj(t) 6 t

`−1∑
j=0

(
`

j

)
j!(log(1/t+ 1))−j

= t`!(log(1/t+ 1))−`
`−1∑
j=0

(log(1/t+ 1))`−j

(`− j)!

6 t`!(log(1/t+ 1))−`

−1 +
∞∑
j=0

(log(1/t+ 1))j

j!


= t`!(log(1/t+ 1))−`(−1 + exp(log(1/t+ 1))) = `!(log(1/t+ 1))−`.

To conclude the proof, we apply the inequality 1/ log(1/t+ 1) < t+ 1/2 for all t > 0.

Theorem 3.3.9 ([Ros14]). Let F ⊆
(

Γ
`

)
be such that |F| > s`(log(1/ε))/p`. Then F contains a

(p, ε)-robust sunflower. In other words, we have fR(`, p, ε) 6 s`(log(1/ε))/p`.

Proof. The proof is by induction on `. If ` = 1, then

Pr[W is independent in F ] = (1− p)|F| 6 e−p|F| 6 ε.

Therefore, F itself is a (p, ε)-robust sunflower. We now suppose ` > 1 and that the result holds for
every t ∈ [`− 1]. We consider the sequence r = (r0, . . . , r`−1) given by rj := sj(log(1/ε))/pj . As in
the proof of Lemma 3.1.2, the proof is now divided in two cases.

Case 1. The family F is not r-well-spread. By definition, there exists an nonempty set T ⊆ Γ such
that |FT | > s`−|T |(log(1/ε))/p`−|T |. By induction, the family FT contains a (p, ε)-robust sunflower
F ′. It is easy to see that {F ∪ T : F ∈ F ′} is a (p, ε)-robust sunflower in F .

Case 2. The family F is r-well-spread. We will apply Janson’s inequality (Lemma 2.2.4) to prove
that F itself is (p, ε)-satisfying, thus finishing the proof. Let

µ :=
∑
F∈F

Pr[F ⊆W], ∆ :=
∑

F,H∈F
F∩H 6=∅

Pr[F ∪H ⊆W].

Janson’s lemma now gives us

Pr[W is independent in F ] 6 exp{−µ2/∆}.

To show that F is (p, ε)-satisfying, it suffices to show that the right-hand side above is at most ε.
This we will now do, by proving that µ2/∆ > log(1/ε).

Observe first that µ = |F| p` > s`(log(1/ε)). We will now bound ∆. Consider the following
auxiliary parameter ∆, which ignores the diagonal terms of the sum defining ∆:

∆ :=
∑

F,H∈F
F 6=H,F∩H 6=∅

Pr[F ∪H ⊆W].

We thus obtain ∆ = µ+ ∆. We will now bound ∆, as follows:

∆ =
∑

F,H∈F
F 6=H,F∩H 6=∅

p2`−|F∩H| =
`−1∑
t=1

∑
T∈(Γ

t)

∑
F,H∈F
F∩H=T

p2`−t 6
`−1∑
t=1

p2`−t
∑
T∈(Γ

t)

|FT |2 .

By double-counting, one gets that
∑

T∈(Γ
t)
|FT | = |F|

(
`
t

)
. Therefore, applying the bound on |FT |,
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we obtain ∑
T∈(Γ

t)

|FT |2 6 s`−t(log(1/ε)) · pt−`
∑
T∈(Γ

t)

|FT |

6 s`−t(log(1/ε)) · pt−` |F|
(
`

t

)
= µ · pt−2`s`−t(log(1/ε))

(
`

t

)
.

We may now continue to bound ∆, as follows:

∆ 6
`−1∑
t=1

p2`−t
∑
T∈(Γ

t)

|FT |2 6 µ
`−1∑
t=1

s`−t(log(1/ε))

(
`

t

)
= µ

(
s`(log(1/ε))

log(1/ε)
− 1

)
.

Therefore, we have ∆ 6 µ s`(log(1/ε))
log(1/ε) , whence we get

µ2

∆
> log(1/ε)

µ

s`(log(1/ε))
> log(1/ε),

as desired.

By applying Proposition 3.3.8, we get the following corollary.

Corollary 3.3.10. Let F ⊆
(

Γ
`

)
be such that |F| > `!(2 log(1/ε)/p)` and ε 6 e−1/2. Then F

contains a (p, ε)-robust sunflower. In other words, we have fR(`, p, ε) 6 `!(2 log(1/ε)/p)`.

Observe that this bound is a strong improvement upon inequality (3.2), which was directly
obtained from the Erdős-Rado sunflower lemma. The lower bound of proposition 3.3.8 shows that
this bound is almost optimal for this technique, thus suggesting that any substantial improvement
over this bound can only come through a different technique. This was achived by Alweiss, Lovett,
Wu and Zhang [ALWZ19], whose result we will discuss in the next section.

3.3.3 A stronger bound and consequences

The main result of the breakthrough work of Alweiss, Lovett, Wu and Zhang [ALWZ19] is the
following theorem, which gave a strong improvement over the robust sunflower bound given by
Rossman (Corollary 3.3.10).

Theorem 3.3.11 ([ALWZ19]). Let F ⊆
(

Γ
`

)
be such that |F| > (log `)` · (log log ` · log(1/ε)/p)O(`).

Then F contains a (p, ε)-robust sunflower. In other words, we have fR(`, p, ε) 6 (log `)` · (log log ` ·
log(1/ε)/p)O(`).

One of the most important consequences of this result comes from applying inequality (3.1)
to this theorem, which is a logarithmic factor short of proving the sunflower conjecture (Conjec-
ture 3.1.5).

Corollary 3.3.12. Let F ⊆
(

Γ
`

)
be such that |F| > (log `)` · (log log ` · r log r)O(`). Then F contains

a sunflower of size r. In other words, we have ER(`, r) 6 (log `)` · (log log ` · r log r)O(`).

We remark that this bound is (roughly) (log `)` · rO(`), which is a significant improvement upon
the `!r` bound of Erdős and Rado (Theorem 3.1.2)3. The ideas behind the result were recently
employed to prove a conjecture of Talagrand [FKNP19]. In Chapters 6 and 7, we will see how this
improved bound leads to better monotone circuit lower bounds.

3Kostochka [Kos97] also proved a bound of the form O(`! · (log log log `/ log log `)`) for 3-sunflowers, which is
improved by this corollary.
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The structure of the proof of [ALWZ19] also follows the case structure of Rossman’s proof
(Theorem 3.3.9). That is, two cases are considered, one when F is not r-well-spread, and the other
when F is r-well-spread for some sequence r. The main thrust of Rossman’s proof consisted into
showing that r-well-spread families are (p, ε)-satisfying, when rj ≈ (j · log(1/ε)/p)j , by applying
Janson’s inequality. The main contribution of [ALWZ19] is to show that r-well-spread families are
(p, ε)-satisfying for a better choice of the sequence r. Their proof is not an application of Janson’s
inequality, but relies mainly on a clever encoding argument.

This case division of the proof is often called a “structure vs. pseudorandomness” approach:
when F is not r-well-spread, there exists an nonempty set T ⊆ Γ such that dF (T ) is large – this
is the “structured case”; when F is r-well-spread, all nonempty sets T ⊆ Γ have bounded degree –
this is the “pseudorandom” case.

In this work, we will not see their proof, but we will present in Chapter 4 a simpler proof of
Corollary 3.3.12 given by Anup Rao [Rao20], also based on a coding argument. This latter proof
actually gives a slightly stronger statement, and makes use of yet another notion of sunflowers very
similar to robust sunflowers, but with a slight tweak in the distribution of W. This notion will be
explained in Section 3.4. For now, we present an observation found in [ALWZ19], which shows that
Theorem 3.3.11 is almost optimal.

3.3.4 A lower bound on the size of set families without robust sunflowers

In this section, we will show the construction of Alweiss, Lovett, Wu and Zhang [ALWZ19],
which gives a lower bound to fR(`, p, ε). This lower bound shows that Theorem 3.3.11 is almost
tight. In particular, it shows that the technique of robust sunflowers cannot be employed to remove
the (log `)` factor in the upper bound to ER, and therefore another approach has to be found for
the sunflower conjecture (Conjecture 3.1.5).

Proposition 3.3.13 ([ALWZ19]). Let p, ε be positive real numbers such that ε 6 1/2, p 6 1 − ε
and p is bounded away from 1.4 Then there exists an `-uniform family F such that

|F| >
(

log `+ log(1/ε)

p

)(1−o(1))`

and F does not contain a (p, ε)-robust sunflower.

Proof. Let Γ1, . . . ,Γ` be disjoint sets, each of size m, where

m :=
log(`/c)

log(1/(1− p))

for some constant c > 1, and let Γ be their union. Let F̂ ⊆ 2Γ be the `-uniform set family composed
of all the sets {x1, . . . , x`}, where xi ∈ Γi for all i ∈ [`]. Note that |F̂ | = m`. Let δ > 0 be a parameter
to be determined later, and let F ⊆ F̂ be a set system such that |F ∩ F ′| 6 (1 − δ)` for every
F, F ′ ∈ F with F 6= F ′. The family F can be obtained by a greedy algorithm, each time choosing a
set F ∈ F̂ arbitrarily, and then removing all sets which intersect F in more than (1− δ)` elements.
Since there are at most

(
`
δ`

)
mδ` 6 2`mδ` such sets, we obtain |F| > 2−`m−δ`|F̂ | = 2−`m(1−δ)`.

We now proceed to show that F does not contain a (p, ε)-robust sunflower. Let W ⊆p Γ. It
suffices to show that FY is not (p, ε)-satisfying for any Y ⊆ Γ. Let us fix then some Y ⊆ Γ. Observe
that the probability that a given set F ∈ FY is contained in W is at most p`−|Y | 6 1 − ε, by
assumption. Therefore, we can assume without loss of generality that |FY | > 2. This implies that
|Y ∩ Γi| 6 1 for every i ∈ [`] and that |Y | 6 (1− δ)`.

Let now I := {i ∈ [`] : |Y ∩ Γi| = 0}. By our assumptions on Y , we get that |I| > δ`. Therefore,
4In this result, the numbers p and ε are allowed to be a function of n = |V |.
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we have

Pr[W is independent in FY ] > Pr[∃i ∈ I : W ∩ Γi = ∅]
= 1− (1− (1− p)m)|I|

= 1− (1− c/`)|I|

> 1− (1− c/`)δ`,

where the last equality comes from the choice of m. We now let c := log(1/(1− ε))/δ, and observe
that

1− (1− c/`)δ` > 1− e−cδ = ε.

We have thus proved that F does not contain a (p, ε)-sunflower. It remains to show that it has the
desired size.

From our choice of m and c and from |F| > 2−`m(1−δ)`, we obtain

|F| > 2−` ·

 log
(
δ` · 1

log(1/(1−ε))

)
log(1/(1− p))

(1−δ)`

.

To further lower bound the size of F , we will need the following asymptotic estimates, which can
be easily checked.

Claim 3.3.14. The following holds.

1. If x ∈ (0, 1/2], then there exists an universal constant t such that 1− x > e−x
t .

2. If x ∈ (0, 1) is bounded away from 1, then there exists an universal constant T such that
1− x > e−Tx.

By our assumptions on p and ε and the claim, we get

log

(
1

log(1/(1− ε))

)
> t · log(1/ε),

1

log(1/(1− p))
>

1

Tp
.

Therefore, we have

|F| > 2−` ·
(

log(δ`) + t · log(1/ε)

T · p

)(1−δ)`
.

Choosing δ = 1/
√
`, we get the desired result:

|F| >
(

log `+ log(1/ε)

p

)(1−o(1))`

.

Remark 3.3.15. The size of the base set Γ used in the construction of Proposition 3.3.13 is

|Γ| = 3

2
· ` log(`/ log(1/(1− ε)))

log(1/(1− p))
= Ω

(
`(log `+ log(1/ε))

p

)
.

This means that the lower bound only holds when |Γ| = Ω(` log `). In particular, the lower bound
does not hold when ` is of the same order as |Γ|.

3.4 The slice sunflower of Rao

In this section, we consider a “slice” version of the p-biased definition of satisfying hypergraphs.



16 SUNFLOWER THEOREMS 3.5

Definition 3.4.1. A hypergraph F with vertex set Γ is said to be (M, ε)-satisfying if

Pr
W⊆MΓ

[W is independent in F ] < ε.

Definition 3.4.2. Let F be a family of subsets of Γ and let Y :=
⋂
F . The family F is called a

(M, ε)-slice-sunflower if the family of petals {F \ Y : F ∈ F} is (M, ε)-satisfying.

The above definition, as well as the following theorem, are implicit in the work of Rao [Rao20].

Theorem 3.4.3 ([Rao20]). There exists a universal constant B > 0 such that the following holds.
Let ε, p ∈ (0, 1) and let F ⊆

(
Γ
`

)
be such that |F| > (Bx log x)`, where x = log(`/ε)/p. Then F

contains a (M, ε)-slice-sunflower, where M = bnpc and n = |Γ|.

The theorem above gives an upper bound on the size of uniform set families without slice
sunflowers. Its proof was inspired by the robust sunflower bound of [ALWZ19] (Theorem 3.3.11),
and it was used to give an alternative upper bound to ER(`, r) which replaces the `! factor of Erdős
and Rado by a (log `)` factor. Its main benefits are that the proof is simpler and that the bound
given is asymptotically better for many applications. In particular, the exponent in Theorem 3.4.3
is `, whereas the exponent in Theorem 3.3.11 is O(`). The better exponent of Rao is crucial for our
applications in monotone circuit complexity in Chapters 6 and 7.

We defer the proof of Theorem 3.4.3 to Chapter 4. For now, we observe that the bound for
ER(`, r) given by Theorem 3.4.3 which we just mentioned follows from the following fact.

Fact 3.4.4 ([Rao20]). Every (bn/rc, 1/r)-slice sunflower contains a sunflower of size r.

To prove the fact, we proceed in the same way as in Fact 3.3.4. The only difference is that the
random partition W1, . . . ,Wr of the base set is now chosen to be such that each Wi is of size
exactly bn/rc. Rao’s theorem combined with the fact gives then gives us the following corollary,
which is Rao’s “version” of Corollary 3.3.12.

Corollary 3.4.5. There exists a universal constant B > 0 such that the following holds. Let F ⊆
(

Γ
`

)
be such that |F| > (B · r log(r`) · log(r log(r`)))`. Then F contains a sunflower of size r. In other
words, we have ER(`, r) 6 (B · r log(r`) · log(r log(r`)))`.

3.5 Other notions and open questions

3.5.1 Daisies

A daisy is a relaxed notion of sunflower which was introduced in the setting of proving lower
bounds for the blocklength of relaxed locally decodable codes [GL20]. A similar notion first appeared
in the context of property testing, with the names pompons and constellations [FLV15].

Definition 3.5.1. A family of sets F ⊆ 2Γ is called a t-daisy if there exists a set Y ⊆ Γ, called
core, such that, for every element v ∈ Γ\Y , there are at most t sets F ∈ F such that v is contained
in the petal F \ Y .

Similar to the lopsided sunflower of Alon and Boppana (Section 3.2), a t-daisy is a more gener-
alized form of sunflower, which relaxes the definition of the core. In particular, it is easy to see that
any sunflower is also a t-daisy for all t > 0. Importantly, if one omits the requirement that the core
of a lopsided sunflower must be properly contained in one of the sets of the family, one could also
see t-daisies as a weaker form of lopsided sunflowers. In fact, if a set Y satisfies F ∩H ⊆ Y for all
F,H ∈ F , then F is a 1-daisy with core Y .

Together with the introduction of this concept, Gur and Lachish also proved a corresponding
“daisy lemma”, with a somewhat different flavour from the sunflower lemmas we have considered so
far.
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Theorem 3.5.2 (Gur and Lachish [GL20]). Let F ⊆
(

Γ
`

)
be such that |F| = cn and let µ be a

distribution over 2Γ such that supp(µ) = F . Then, for some s ∈ [`] and m = max {1, s− 1}, there
exists a cnm/`-daisy S ⊆ F with a core of size at most ` · n1−s/` and petals of size at most s, such
that µ(S) > 1/`.

It is natural to ask whether one can obtain a result with the same flavour as that of the sunflower
lemma of Erdős and Rado for the concept of daisies. Let fD(t, `, r) be the maximum size of an `-
uniform set family that does not contain a t-daisy with r petals.

Problem 3.5.3. Give an upper bound to fD(t, `, r).

An interesting observation is that the set of petals of a t-daisy is (p, ε)-satisfying. As in Rossman’s
original proof of the robust sunflower lemma (Theorem 3.3.9), the proof follows from an application
of Janson’s inequality (Lemma 2.2.4).

Proposition 3.5.4. Let F be a t-daisy such that all of its petals have size s. Suppose moreover
that |F| > log(1/ε)st/ps. Then the set family consisting of the petals of F is (p, ε)-satisfying.

Proof. Let F be a t-daisy of with core Y and vertex set Γ. Let W ⊆p Γ. For F ∈ F , let F ′ := F \Y
and let F ′ := {F ′ : F ∈ F} be the set family consisting of the petals of F . Let

µ :=
∑
F∈F

Pr[F ′ ⊆W],

∆ :=
∑

F,H∈F
F∩H 6=∅

Pr[F ′ ∪H ′ ⊆W].

We have µ = |F| ps. Moreover, we have

∆ = µ+
∑
F∈F

∑
F,H∈F

F 6=H,F∩H 6=∅

Pr[F ′ ∪H ′ ⊆W] 6 µ+
∑
F∈F

s(t− 1)ps 6 µst.

Therefore, by Janson’s inequality (Lemma 2.2.4) we have

Pr[W is independent in F ′] < exp(−µ2/∆) 6 ε.

3.5.2 Robust lopsided versions

In many applications of sunflower theorems in monotone circuit lower bounds, the only require-
ment the core has to satisfy is that it is properly contained in one of the subsets. It is therefore
natural to consider the following definition, which relaxes even further the requirements for the core
of the robust sunflower.

Definition 3.5.5. We say that F ⊆ 2Γ is a (p, ε)-robust lopsided sunflower if there exists a set
Y ⊆ Γ (called core) such that Y ( F for some F ∈ F and the family of the petals {F \ Y : F ∈ F}
is (p, ε)-satisfying.

We now make some remarks on the particularity of this notion of sunflowers. Since we make
no requirements on the core of a robust lopsided sunflower other than it being properly contained
in one of the sets of the family, it is easy to see that, if a set family F contains a robust lopsided
sunflower, than it is itself a robust lopsided sunflower. In other words, being a robust lopsided
sunflower is a monotone property.

Furthermore, one readily sees that, without loss of generality, we can suppose that the core Y
is of the form F \ {u} for some F ∈ F and u ∈ F , since Y is properly contained in one of the sets
of the family, and enlarging the core can only enlarge the probability of W containing a petal of
the family.
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We will now see that robust lopsided sunflowers bear the same relationship with lopsided sun-
flowers that robust sunflowers do with sunflowers. First, we see that every lopsided sunflower can be
seen as a robust lopsided sunflower. The “conversion parameters” are the same as that of Fact 3.3.3.

Fact 3.5.6. Every `-uniform lopsided sunflower of size r is a (p, e−rp
`
)-robust lopsided sunflower.

Proof. Observing that the sets F \ Y for F ∈ F are mutually disjoint, we can apply the same
argument of Fact 3.3.3.

Now, we show that every robust lopsided sunflower is a lopsided sunflower. There is a slight
difference in the “conversion parameters” here, but they are morally the same as those of Fact 3.3.4.
This unpublished fact was observed in collaboration with Benjamin Rossman and Mrinal Kumar.

Fact 3.5.7. Let F be a (1/r, (r − 1)/r2)-robust lopsided sunflower. Then F contains a lopsided
sunflower of size r + 1.

Proof. For simplicity, we let ε := (r − 1)/r2 and p := 1/r and we suppose W ⊆p Γ. Since F is a
(p, ε)-robust lopsided sunflower, there exists F0 ∈ F and Y ( F0 such that

Pr [W ∪ Y is independent in F ] < ε.

Without loss of generality, we assume that there exists u ∈ F0 such that Y = F0 \ {u}. Let
F ′ := {F ∈ F : u /∈ F}, V ′ := V \{u} and W′ ⊆p V ′. Observe that, for every F ∈ F \F ′, if u /∈W
then F 6⊆W ∪ Y . Therefore, we have

ε > Pr[W ∪ Y is independent in F ]

> Pr
[
u /∈W and W ∪ Y is independent in F ′

]
= (1− p)Pr

[
W ∪ Y is independent in F ′

]
.

It follows that
Pr
[
W ∪ Y is independent in F ′

]
<

ε

1− p
= 1/r.

Let W′
1,W

′
2, . . . ,W

′
r be a uniform random partition of V ′. We have W′

i ⊆p V ′ for every i ∈ [r].
By an union bound, we obtain that the probability that there exists i ∈ [r] such that W′

i ∪ Y is
independent in F ′ is at most 1. Therefore, there exists a partition V ′1 ∪̇ . . . ∪̇ Vr of V ′ such that, for
every i ∈ [r], there exists Fi ∈ F ′ satisfying Fi \ Y ⊆ V ′i . This implies that Fi ∩ Fj ⊆ Y for every
i, j ∈ [r] with i 6= j. Moreover, we also have F0 ∩ Fi ⊆ Y for every i ∈ [k], since u /∈ Fi. It follows
that F0, F1, F2, . . . , Fr is a lopsided-sunflower of size k + 1.

As before, let fRL(`, p, ε) be the maximum size of an `-uniform set family that does not contain a
a (p, ε)-robust lopsided sunflower. Note that, because of the observation about monotonicity above,
any `-uniform set family with size bigger than fRL(`, p, ε) is itself a (p, ε)-robust lopsided. Applying
Fact 3.5.6 and the lopsided sunflower bound (Theorem 3.2.3), we obtain fRL(`, p, ε) 6 (log(1/ε)/p`)`.
Furthermore, since any robust sunflower is a robust lopsided sunflower, we may apply the robust
sunflower bound of [ALWZ19] (Theorem 3.3.11) to obtain fRL(`, p, ε) 6 (log log ` · log(1/ε)/p)O(`).
Combining these two inequalities, we get

fRL(`, p, ε) 6 min
{

(log(1/ε)/p`)`, (log log ` · log(1/ε)/p)O(`)
}
. (3.3)

On the other hand, Fact 3.5.7 gives us a lower bound of (1/p− 1)` for fRL(`, p, ε). It is natural to
ask for tighter bounds for this extremal function.

Problem 3.5.8. Prove better bounds for fRL(`, p, ε).

It would also be interesting to see if this notion also has applications in computational complex-
ity.
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Problem 3.5.9. Find applications of robust lopsided sunflowers in computational complexity, in
particular monotone circuit lower bounds. Can strong upper bounds for fRL(`, p, ε) imply improved
monotone circuit lower bounds?

A more elaborate discussion on this problem is given in Section 6.6.1.
Finally, given that being a robust lopsided sunflower is a monotone property in 22[n] , and that

every monotone property has a threshold function (Theorem 2.2.5), it would be interesting to find
a threshold function for this property. Perhaps it would help us to understand better the behaviour
of random monotone Boolean functions. Such functions are interesting because they are known to
have high circuit complexity 5.

More formally, the problem statement is as follows. Let P(n, p) be the p-random sublattice of
2[n]. Let p̂q,ε be such that, if p � p̂q,ε, then P(n, p) is a robust lopsided sunflower almost surely,
and if p� p̂q,ε, then P(n, p) is not a robust lopsided sunflower almost surely.

Problem 3.5.10. Calculate p̂q,ε for all q and ε.

5See, for instance, Section 1.4 of Jukna [Juk12]



20 SUNFLOWER THEOREMS 3.5



Chapter 4

A breakthrough in sunflower theorems

In this chapter, we will reproduce the proof of Theorem 3.4.3 given in Rao [Rao20], whose
statement we now recall.

Theorem 3.4.3 ([Rao20]). There exists a universal constant B > 0 such that the following holds.
Let ε, p ∈ (0, 1) and let F ⊆

(
Γ
`

)
be such that |F| > (Bx log x)`, where x = log(`/ε)/p. Then F

contains a (M, ε)-slice-sunflower, where M = bnpc and n = |Γ|.

The proof will be based on an elegant encoding argument inspired by the work of Alweiss, Lovett,
Wu and Zhang [ALWZ19]. We give in the following section a simplified version of Rao’s argument,
due to Rao himself [Rao19], and go straight to the proof of Theorem 3.4.3 in the remaining sections.

4.1 Warm-up: an even weaker “sunflower”

To introduce and motivate some of the ideas that are going to be used in the proof of The-
orem 3.4.3, we will consider in this section an even weaker notion of sunflower. Here, instead of
asking the random set W to contain an edge of the hypergraph with high probability (i.e., W is
not independent), we will require it to almost contain such an edge. In this simplified scenario,
some of the main ideas will be clearer. This section follows a short and elegant proof exposed in a
talk of Anup Rao [Rao19], which was in turn inspired by an encoding argument which appears in
Lemma 2.7 of [ALWZ19]. The reader who wants to rush to the proof of Theorem 3.4.3 may skip
this section.

Given a hypergraph H and a number t > 0, we say that a set S ⊆ V (H) is t-independent if
|F \ S| > t for all F ∈ E(F). Observe that a set is independent in F if and only if it is 0-independent.
This motivates the following definition, which generalizes Definitions 3.4.1 and 3.4.2.

Definition 4.1.1. We say that a hypergraph H with vertex set Γ is (M, ε, t)-almost satisfying if

Pr
W⊆MΓ

[W is t-independent in H] < ε.

Observe that a (M, ε)-satisfying hypergraph is (M, ε, t)-almost satisfying for all t > 0. A hyper-
graph is (M, ε)-satisfying if, with probability larger than 1 − ε, there exists a set F ∈ E(F) with
F ⊆W. This is the same as |F \W| = 0. The role of t is then to bound how far the family F is
from being (M, ε)-satisfying.

As we have seen in Chapter 3 (See, for instance, the discussion in Section 3.3.3), in the “structure
vs. randomness” approach to sunflower bounds the main step is to show that well spread families
are satisfying. The weaker we can make the assumption of well-spreadedness, the stronger is the
sunflower bound. We will now show that well-spread families are almost satisfying. The coding
argument employed in this proof is a simplified version of the coding argument that will be employed
in the proof of Theorem 3.4.3, where we will show that well-spread families are not only almost
satisfying, but actually (M, ε)-satisfying.
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Proposition 4.1.2 ([ALWZ19, Rao19]). Let t > 0 and ε, p ∈ (0, 1). Let H be a `-uniform hypergraph
with vertex set Γ, and suppose that H is a (1, r, r2, . . . , r`)-well-spread family, where r = (5/ε ·
(4/p)`)1/t. Suppose moreover that |E(H)| > r`. Then H is (M, ε, t)-almost satisfying, where M =
bnpc and n = |Γ|.

Proof. Throughout this proof, fix an ordering F1, . . . , Fk of the edges of H. A pair (W,F ) where
W ∈

(
Γ
M

)
is t-independent in H and F is an edge of H will henceforth be called a bad pair. We

will give an upper bound on the number of bad pairs via an encoding argument, as follows. We will
assign to each such pair a different binary string with s bits. Since there are 2s binary strings with
s bits and this assignment is injective, an upper bound of 2s on the number of bad pairs will ensue.

1. First, we encode W ∪ F . Since |W | = M and |F | = `, there are at most(
n

M

)
+ · · ·+

(
n

M + `

)
6

(
n+ `

M + `

)
6

(
n

M

)
·
( n
M

)`
=

(
n

M

)
· (1/p)`

choices for W ∪ F . We can therefere encode W ∪ F with log2

((
n
M

))
+ ` · log2(1/p) + 1 bits.

2. Let Fj be the first edge of the subhypergraph H[W ∪ F ] of H induced by W ∪ F (i.e., Fj ⊆
F ∪W ). Such an Fj always exists because F ∈ E(H[W ∪F ]). We then encode F ∩Fj , which
can be done with ` bits since H is `-uniform.

3. The crucial observation is that, since Fj \ W ⊆ F and W is t-independent, we get that
|F ∩ Fj | > t. Since H is (1, r, r2, . . . , r`)-well-spread, we get that there are at most r`−t

choices for F . We can then encode F with (`− t) · log2 r + 1 bits.

4. We now encodeW ∩F , which can be done with ` bits. The setW can now be easily recovered
from W ∪ F , F , and W ∩ F .

The fact that this encoding is indeed injective can be seen by observing that the above encoding is
constructed in such a way as to give a natural decoding algorithm which recovers the pair (W,F )
from the information given by the string. Further, the encoding spends

log2

(
n

M

)
+ ` · log2(1/p) + 2`+ (`− t) log2 r + 2

bits, which implies that there are at most
(
n
M

)
· 4 · (4/p)` · r`−t bad pairs. By double-counting the

number of bad pairs, we then get

Pr
W⊆MΓ

[W is t-independent in H] 6
4 · (4/p)`

rt
=

4

5
· ε < ε.

4.2 Counting with codes

4.2.1 Prefix-free codes

In this section, we recall a few basic facts about prefix-free encodings. Since the proofs are short,
we give full proofs for completeness.

An encoding C : S → {0, 1}∗ of a set S is called prefix-free if there does not exist x, y ∈ S such
that x 6= y and C(x) is a prefix of C(y). For x ∈ {0, 1}∗, we denote by length(x) the length of x
(i.e., length(x) = k ⇐⇒ x ∈ {0, 1}k).

Lemma 4.2.1 (Kraft [Kra49]). Let S be a finite set and let C : S → {0, 1}∗ be a prefix-free encoding
of S into binary strings. We have ∑

s∈S
2− length(C(s)) 6 1.
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Proof. Let x be a uniformly random binary string, with length longer than any of the strings of the
encoding. Since the encoding is prefix-free, no two strings of the encoding can be a prefix of x at
the same time. This implies

1 > Pr
x

[∃s ∈ S : C(s) is a prefix of x] =
∑
s∈S

2− length(C(s)).

Corollary 4.2.2. Let S be a finite set and let C : S → {0, 1}∗ be a prefix-free encoding of S into
binary strings. Let also x ∼ U (S). We have

|S| 6 2Ex[length(C(x))].

Proof. From the convexity of the exponential function (using Jensen’s inequality: Proposition 2.2.3)
and Kraft’s inequality (Lemma 4.2.1), we get

2−Ex[length(C(x))] 6 E
x

[2− length(C(x))] 6 |S|−1 .

We remark that Corollary 4.2.2 is a particular case of a more general result due to Shannon
which states that, under any distribution, the average length of a prefix-free encoding is at least the
entropy of the distribution. Corollary 4.2.2 is then a particular instance of this fact for the uniform
distribution.

4.2.2 Measuring independence

As in the proof of Proposition 4.1.2, we will fix an ordering F1, F2, . . . , Fk of the edges of F .
For a set W ⊆ Γ = V (F), we denote by χ(Fi,W ) the set Fj \W , where j ∈ [k] is the first index
minimizing |Fj \W | subject to Fj ⊆ Fi ∪W . The key observation here is that, for any F ∈ F , we
have χ(F,W ) = ∅ if and only if W is not independent in F .

The following lemma is essential to prove Theorem 3.4.3. Its proof follows an encoding argument
similar to that of Proposition 4.1.2.

Lemma 4.2.3 ([Rao20]). The following holds for every non-negative integer s. Let F be an `-
uniform hypergraph with vertex set Γ, and suppose that F is a (1, r, r2, . . . , r`)-well-spread family for
some r > 0. Suppose moreover that |F| > r`. Let F ∼ U (F) and X ⊆K Γ be sampled independently,
where K = s · 128 · dn/re. We have

E
X,F

[|χ(F,X)|] 6 ` · (1− 1/ log2 r)
s.

Proof. The proof is by induction on s. The result is trivial when s = 0. Suppose then that s > 0.
Let y := (s − 1) · 128 · dn/re and z := K − y = 128 · dn/re. Let Y ⊆y Γ and Z ⊆z Γ be random
disjoint sets. Clearly, we can sample X as X = Y ∪Z. In what follows, we will show that, for every
fixed set Y ∈

(
Γ
y

)
, we have

E
Z,F

[|χ(F, Y ∪ Z)|] 6 E
F

[|χ(F, Y )|] · (1− 1/ log2 r). (4.1)

By taking expectations over Y on both sides and by the induction hypothesis, we will get

E
Y,Z,F

[|χ(F,Y ∪ Z)|] 6 E
F,Y

[|χ(F,Y)|] · (1− 1/ log2 r)

6 ` · (1− 1/ log2 r)
s,

thus finishing the proof.
Let us then fix such a Y . Observe now that, if |χ(F, Y )| = 0 for some F ∈ F , then, as observed

above, we have EF[|χ(F, Y )|] = 0, which implies EF,Z[|χ(F, Y ∪ Z)|] = 0. Thus we may henceforth
suppose that EF[|χ(F, Y )|] > 1.
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We will now count the number of pairs (Z,F ), where Z is in the support of Z when Y = Y (i.e.:
Z ∩ Y = ∅ and Z ∈

(
Γ
z

)
), and F ∈ E(F). Clearly, there at least r` ·

(
n−y
z

)
such pairs. We will now

upper bound the number of such pairs by giving a prefix-free encoding of (Z,F ).1 The encoding
bears some similarities to the encoding of Proposition 4.1.2, and it is as follows.

1. Encode |χ(F, Y )| as 0|χ(F,Y )|1. This requires |χ(F, Y )|+ 1 bits.

2. Encode X ∪ χ(F, Y ), where X = Y ∪ Z. Because Y is fixed, there are at most(
n− y
z

)
+ · · ·+

(
n− y

z + |χ(F, Y )|

)
6

(
n− y + |χ(Y, F )|
z + |χ(F, Y )|

)
6

(
n− y
z

)
·
(n
z

)|χ(F,Y )|

choices forX∪χ(F, Y ). Thus we can encodeX∪χ(F, Y ) with log
(
n−y
z

)
+|χ(F, Y )| log2(n/z)+1

bits.

3. Let Fj be the first edge of F which minimizes |χ(Fj , Y )| subject to χ(Fj , Y ) ⊆ X ∪ χ(F, Y ).
Such an edge always exists because F is a candidate. We encode χ(Fj , Y ) ∩ χ(F, Y ) with
|χ(F, Y )| bits.

4. We now observe that χ(Fj , Y ) ∩ χ(F, Y ) ⊆ F . Since F is (1, r, . . . , r`)-well-spread, there are
at most r`−t choices for F , where t = |χ(Fj , Y ) ∩ χ(F, Y )|. We can then encode F with
log2(r`−t) + 1 bits. Moreover, we claim that t > |χ(F,X)| = |χ(F, Y ∪ Z)|. Indeed, let k be
such that χ(Fj , Y ) = Fk \ Y . We have Fk \ Y ⊆ X ∪ χ(F, Y ), which implies

Fk ⊆ X ∪ χ(F, Y ) ⊆ X ∪ F

and
Fk \X ⊆ χ(F, Y ) \X.

Thus, we get

|χ(F,X)| 6 |Fk \X| = |(Fk \X) ∩ (χ(F, Y ) \X)|
6 |(Fk \ Y ) ∩ χ(F, Y )|
= |χ(Fj , Y ) ∩ χ(F, Y )| = t.

This means that the number of bits of the encoding of F is

log2(r`−t) + 1 6 log2(r`−χ(F,X)) + 1.

5. Finally, we encode X ∩ χ(F, Y ), which can be done with |χ(F, Y )| bits. The set X can now
be easily recovered from X ∪ χ(F, Y ), F and X ∩ χ(F, Y ). And having recovered X, we can
recover Z = X \ Y .

It is not hard to see that the encoding is prefix-free, because the length of the encoding of (Z,F )
is determined by |χ(F, Y )|, which is encoded as a prefix in the form 0|χ(F,Y )|1. Furthermore, the
expected length of the encoding is upper bounded by

(3 + log2(n/z))E
F

[|χ(F, Y )|] + E
Z,F

[|χ(F, Y ∪ Z)|] · log2(r) + log2

(
n− y
z

)
+ ` · log2(r) + 3.

1The main difference with the proof of Proposition 4.1.2 is that, instead of giving an encoding of fixed size and
using the length of the encoding to bound the number of pairs, we will give a prefix-free encoding, and use the average
length of the encoding to bound the number of pairs via Corollary 4.2.2.
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Since there are at least r` ·
(
n
y−z
)
pairs (Z,F ), Corollary 4.2.2 now gives us

E
Z,F

[|χ(F, Y ∪ Z)|] · log2 r 6 (3 + log2(n/z))E
F

[|χ(F, Y )|] + 3

6 (6 + log2(n/z))E
F

[|χ(F, Y )|]

= log2(64n/z)E
F

[|χ(F, Y )|]

6 log2(r/2)E
F

[|χ(F, Y )|] ,

which implies inequality (4.1), thus finishing the proof.

4.2.3 Proof of Theorem 3.4.3

We will now apply Lemma 4.2.3 to prove Theorem 3.4.3.

Proof of Theorem 3.4.3. In what follows, we suppose B is a large enough universal constant.
The proof is by induction on `. Suppose ` = 1. Then F is a family of singletons. Therefore, the

probability that W ⊆M Γ does not contain any set of F is equal to
(n−|F|

M

)
/
(
n
M

)
. We get

Pr [W is independent in F ] =

(n−|F|
M

)(
n
M

) 6

(
n−M
n

)|F|
6 (1− p/2)|F| 6 e−|F|p/2 < ε.

Hence, the family F is itself a (M, ε)-slice-sunflower (with an empty core).
We now proceed by induction, supposing ` > 2 and that the claim holds for all k-uniform

families such that k < `. Let r := Bx log2 x.
Case 1. Observe that, if F is not (1, r, r2, . . . , r`)-well-spread, then there exists a set T ⊆ Γ such

that dF (T ) > r`−|T |. Therefore, by the induction hypothesis, FT contains a (M, ε)-slice-sunflower
F ′T . Observe that the family {U ∪ T : U ∈ F ′T } ⊆ F is a (M, ε)-slice-sunflower.

Case 2. We now consider the case when F is (1, r, r2, . . . , r`)-well-spread. We will use Lemma 4.2.3
to finish the proof. Let s = dlog2(`/ε) · log2 re and K = s · 128 · dn/re. We have

K < 512 · log2 r · log2(`/ε) · n/r

= 512 · n · log2B + log2 x+ log log2 x

Bx log2 x

= 512 · np · log2B + log2 x+ log log2 x

B log2(`/ε) log2 x

6 512 · np · log2B

B
< M,

for B large enough. Therefore, letting X ⊆K Γ, we get by Lemma 4.2.3 that

E
W,S

[|χ(F,W)|] 6 E
X,F

[|χ(F,X)|]

6 ` · (1− 1/ log2 r)
s

6 ` · (1− 1/ log2 r)
log2(`/ε)·log2 r

< ` · 2− log2(`/ε) = ε.

We can conclude the proof by applying Markov’s inequality (Proposition 2.2.2), as follows:

Pr
W

[W is independent in F ] = Pr
W,F

[|χ(F,W)| > 0] 6 E
W,F

[|χ(F,W)|] < ε.
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4.3 Further questions

The definition of “almost” satisfying sets (Definition 4.1.1) motivates the following definition.

Definition 4.3.1. A hypergraph is said to be a (M, ε, t)-almost sunflower if the family of petals
{F \ Y : F ∈ E(F)} is (M, ε, t)-almost satisfying, where Y :=

⋂
F is called the core.

Given that robust sunflowers and its variations have found ample applications in computational
complexity, perhaps it is possible that the weaker variant considered here is enough for some appli-
cations. Better bounds for almost sunflowers can be expected, in comparison to robust sunflowers,
which in turn might lead to stronger bounds in the respective applications.

Problem 4.3.2. Find applications of almost sunflowers, checking whether they can offer improve-
ments on the bounds obtained by an application of robust sunflowers.



Chapter 5

Sunflowers and the approximation
method

5.1 Introduction

In this chapter, we will give a general overview of how different notions of sunflowers play out
in an application of the approximation method of Razborov [Raz85b]. We hope that a generalized
exposition of the method will help the reader to appreciate the technical contribution of the results
of the following chapters.

Let fT : 2Γ → {0, 1} be a target monotone Boolean function for which we want to prove
a monotone circuit lower bound. Since complexity lower bounds are always asymptotic, we will
henceforth suppose that |Γ| is large enough. To apply the approximation method for fT, we must
find two distributions D+ and D− supported in 2Γ satisfying the following properties.

Definition 5.1.1. A pair of distributions (D+,D−) is called a pair of test distributions for fT if

Pr
Y∼D+

[fT(Y) = 1] + Pr
N∼D−

[fT(N) = 0] > 8/5.

Because of this property, the distribution D+ is called the positive test distribution, and D− is called
the negative test distribution.

We will always denote a random sample from D+ by Y (for “Yes”) and a random sample from
D− by N (for “No”). We also define a set A of monotone Boolean functions called approximators,
and we require the following properties of A.

Definition 5.1.2 (Approximators make many errors). We say that A ⊆ MonBool (Γ) is inaccurate
for (D+,D−) if the following holds for every approximator g ∈ A:

Pr
Y∼D+

[g(Y) = 1] + Pr
N∼D−

[g(N) = 0] 6 3/2.

Definition 5.1.3. We say that A ⊆ MonBool (Γ) is a δ-approximator for (D+,D−) if, for every
Boolean function f : 2Γ → {0, 1}, there exists an approximator fA ∈ A such that

Pr
Y∼D+

[f(Y) = 1 and fA(Y) = 0] + Pr
N∼D−

[f(N) = 0 and fA(N) = 1] 6 δ · Cmon(f).

We say that fA δ-agrees with f on (D+,D−).

Definition 5.1.2 means that every approximator commits many “mistakes” in the distributions
D+ and D−. Definition 5.1.3 means that every Boolean function computed by a “small” monotone
circuit (i.e.: size s � 1/δ) agrees with an approximator on both D+ and D− with high probabil-
ity. These definitions imply a lower bound on the size of monotone circuits computing the target
function.

27
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Theorem 5.1.4. Let (D+,D−) be a pair of test distributions for fT. Suppose that there exists
A ⊆ MonBool (Γ) such that A inaccurate on (D+,D−) and that A is a (1/10S)-approximator for
(D+,D−). Then any monotone circuit computing fT has at least S gates.

Proof. Let g ∈ A be an approximator which (1/10S)-agrees with fT on (D+,D−). We have

8/5 6 Pr[fT(Y) = 1] + Pr[fT(N) = 0]

≤ Pr[fT(Y) = 1 and g(Y) = 0] + Pr[g(Y) = 1]

+ Pr[fT(N) = 0 and g(N) = 1] + Pr[g(N) = 0]

6 3/2 + Cmon(fT)/(10S).

This implies Cmon(fT) > S.

We now discuss in general terms how to find a good pair of test distributions for fT and how to
obtain a set of approximators satisfying Definitions 5.1.2 and 5.1.3, highlighting the role of variants
of sunflowers.

5.2 Test distributions

It is usually not very complicated to find test distibutions D+ and D−. One possibility is to let
D+ be a minterm of fT chosen uniformly at random, and to let D− be a maxterm of fT chosen
uniformly at random. This is exactly the choice of Alon and Boppana [AB87] for the Clique(n, k)
function. Sometimes one may also chooseD− to be a p-biased distribution, with p being a probability
function below the threshold for the ocurrence of a minterm of fT1.

The choice of the test distributions may also influence the quality of the lower bound. Using
Clique(n, k) again as an example, a p-biased distribution below the threshold for the ocurrence of k-
cliques corresponds to an Erdős-Rényi random graph G(n, p), with p 6 n−2/(k−1). This distribution
was first considered for monotone circuit lower bounds against Clique(n, k) in [Ros14], in the regime
when k is constant. It turns out that, extending Rossman’s analysis for a larger range of k, we are
able to improve Alon and Boppana’s bound for Clique(n, k), from nΩ(

√
k) to nΩ(k). This will be the

subject matter of Chapter 7.

5.3 Approximators

A crucial step when applying the approximation method is to build a good set of approximators.
Any viable set of approximators must be a legitimate model, which we define as follows.

Definition 5.3.1 ([Raz85b]). A subposet A of MonBool (Γ)2 is said to be a legitimate model with
approximating operators t,u : A×A → A if the following holds:

1. The operators t and u are commutative;

2. We have xγ ∈ A for all γ ∈ Γ and 0,1 ∈ A.

Functions in A are called approximators. The operators t,u are called approximate OR and ap-
proximate AND, respectively.

The main challenge of proving that A is a δ-approximator is to find a function fA ∈ A that
approximates a given function f in the positive and negative distributions. With a good legitimate
model in hand, we can do this in the following way.

Definition 5.3.2. Given a {∨,∧}-circuit C, we define its approximate circuit CA as the {t,u}-
circuit obtained by replacing the ∨ and ∧ gates of C by t and u gates, respectively.

1Such a p always exists because of Theorem 2.2.5.
2Recall that MonBool (Γ) is the set of monotone Boolean functions 2Γ → {0, 1}. (See Section 2.3.)
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If A is a legitimate model, then CA is well-defined (because the approximating operators are
commutative) and computes a function of A (because the input gates also belong to A, as well as
the constant functions). To prove that A is δ-approximator for (D+,D−), one takes a monotone
circuit C computing f and defines fA as the approximator computed by the approximate circuit
CA. To show that an approximator obtained in this way provides a good approximation in the test
distributions, we show that CA provides a good gate-by-gate approximation of C on (D+,D−).

Definition 5.3.3. We say that A ⊆ MonBool (Γ) is a gate-by-gate δ-approximator for (D+,D−)
if, for every f, g ∈ A, we have

Pr [(f ∧ g)(Y) = 1 and (f u g)(Y) = 0] 6 δ (5.1)
Pr [(f ∨ g)(Y) = 1 and (f t g)(Y) = 0] 6 δ. (5.2)
Pr [(f ∧ g)(N) = 0 and (f u g)(N) = 1] 6 δ (5.3)
Pr [(f ∨ g)(N) = 0 and (f t g)(N) = 1] 6 δ. (5.4)

The constant δ is called approximation error.

Lemma 5.3.4. Suppose that A is a gate-by-gate (δ/2)-approximator for (D+,D−). Then A is a
δ-approximator for (D+,D−).

Proof. Let f ∈ MonBool (Γ). Let C be a monotone circuit of size s computing f . Let f1, f2 . . . , fs
be a straight-line program that describes C. If fi is an ∧-gate, let fAi be an u-gate. Equivalently, let
fAi be an t-gate if fi is an ∨-gate. Clearly, fA1 , . . . , fAs is a straight-line program that describes CA.
If C(Y) = 1 but CA(Y) = 0, then there exists a gate fi of C such that fi(Y) = 1 but fAi (Y) = 0.
Without loss of generality, suppose this is the first such gate in the straight-line program. Let
j, k < i be such that fi = fj ◦ fk, where ◦ ∈ {∨,∧}. Let ◦ denote the corresponding approximating
operator for ◦. By the minimality of fi, we have that (fAj ◦ fAk )(Y) = 1 but (fAj ◦ fAk )(Y) = 0. By
assumption, this happens with probability at most δ/2. Therefore, by an application of the union
bound on the gates of C, we get that

Pr[C(Y) = 1 and CA(Y) = 0] 6 (δ/2) · s.

The same argument shows

Pr[C(N) = 0 and CA(N) = 1] 6 (δ/2) · s.

Therefore, we have Pr[C(Y) = 1 and CA(Y) = 0] + Pr[C(N) = 0 and CA(N) = 1] 6 δ · s.

By Theorem 5.1.4, we can summarize what we have seen in the following result, which gives an
agenda for proving monotone circuit lower bounds with the approximation method.

Theorem 5.3.5. Let (D+,D−) be a pair of test distributions for fT. Suppose that there exists
a legitimate model A such that A inaccurate on (D+,D−) and that A is a gate-by-gate (1/20S)-
approximator for (D+,D−). Then any monotone circuit computing fT has at least S gates.

We will now describe a general construction of legitimate models. This construction will gen-
eralize the constructions of legitimate models of [Raz85b], [Raz85a], [AB87] and [CKR20]. This
includes monotone Boolean functions such as clique, matching, Andreev’s function [And85] and
Harnik-Raz function [HR00]. Though such a generalized construction is already given in a book
by Jukna [Juk12, Section 9.10.1], our construction has the advantage of abstracting the type of
sunflower used in the construction, whereas his construction is limited to lopsided sunflowers (see
Section 3.2).
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5.4 A general construction of legitimate models

Let F ⊆ 2Γ. Let dFe : 2Γ → {0, 1} denote the function which assumes value 1 on an input X if
there exists a set F ∈ F such that F ⊆ X. In other words, we have

dFe =
∨
F∈F

1F =
∨
F∈F

∧
f∈F

xf .

Henceforth, we fix a number ε > 0. This number will measure the quality of the approximation
under the negative distribution D−. We also fix a a sequence of disjoint set families X1,X2, . . . ⊆ 2Γ

and a parameter w. We let X :=
⋃
Xi. The choice of this family and of the parameter w is problem-

specific. For convenience, we let X6w :=
⋃
i6w Xi. We will make the following assumptions about

X :

1. All sets of Xi have the same size, denoted by s(X , `);

2. We have s(X , i) < s(X , j) for i < j.

3. {γ} ∈ X6w for all γ ∈ Γ.

A pair (X ,w) satisfying (1)-(3) is called ambient family. The ambient family X such that X` =
(

Γ
`

)
and X = 2Γ is called the trivial ambient family.

Let X ∈ 2Γ. We write (F `ε X)D− to denote that

Pr
N∼D−

[N ∪X is independent in F ] < ε.

Equivalently, this means that
E

N∼D−
[dFe(N ∪X)] > 1− ε.

We read (F `ε X)D− as F is ε-satisfied by X on D−. We say that F is (X6w,D−, ε)-closed if, for
every X ∈ X6w, we have

(F `ε X)D− =⇒ X ∈ F .

When X6w, D− and ε are clear in context, we will simply write closed for short. Observe that the
intersection of any two closed families is also closed; furthermore, the family 2Γ is closed. We may
thus define the closure cl(F) of a family F as cl(F) =

⋂
{H : F ⊆ H and H is closed}. It is not

hard to check that cl(·) is, indeed, a closure operator in the poset 2Γ.

Definition 5.4.1. The set of approximators A = A(X6w,D−, ε) determined by X ,D− and ε is
defined as

A =
{
dFe : F ⊆ X ,F is (X6w,D−, ε)-closed

}
,

with approximating operators

dFe t dHe := dcl(F ∪H)e,
dFe u dHe := dF ∩ He.

Now, in order to conclude that A = A(X6w,D−, ε), together with the approximating operators
t and u, is a legitimate model, we will need to make a minor assumption on D−.

Proposition 5.4.2. Suppose that PrN∼D− [γ ∈ N] 6 1 − ε for all γ ∈ Γ. Then 〈A,t,u〉 is a
legitimate model for A = A(X6w,D−, ε).

Proof. The only requirement we need to check is xγ ∈ A – all else is trivial. Let

Fγ = {A ∈ X6w : γ ∈ A} .
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It is easy to see that xγ = dFγe, since {γ} ∈ Fγ . Now, it suffices to check that Fγ is closed. Suppose
that (Fγ `ε X)D− for some X ∈ X6w. This implies that PrN∼D− [γ ∈ N ∪X] > 1− ε. If X /∈ Fγ ,
this means that γ /∈ X, which implies PrN∼D− [γ ∈ N] > 1− ε, a contradiction.

5.4.1 Examples of the general construction

To facilitate the understanding of the construction, we provide in the table below some instances
of this construction.

Function X` w D− ε Reference

Matching Matchings of ` edges δ · log n - n−Ω(log3 n) [Raz85a]
Clique(n, k) Cliques of ` vertices

√
k (k − 1)-cocliques n−

√
k [AB87]

Clique(n, k) Cliques of ` vertices δ · k G(n, p) n−k [CKR20]
HR(c, k)3 All sets of size ` c bn/2c-slice n−2c [CKR20]

The negative distribution for Matching is as follows. We choose a two-coloring c of the com-
plete n × n bipartite graph Kn,n uniformly at random, and let N be the subgraph with E(N) =
{(u, v) : c(u) = c(v)}. Furthermore, (k − 1)-cocliques are complete (k − 1)-partite graphs.

5.4.2 Properties of the general construction

The following lemma is easy to check, following from the definitions.

Lemma 5.4.3. Let F ,H ⊆ 2Γ be such that F ⊆ H and let X,Y ∈ 2Γ be such that X ⊆ Y . The
following holds.

1. If (F `ε X)D−, then (H `ε X)D−.

2. If X ∈ F , then (F `ε Y )D− .

3. If X ∈ F , F is closed and Y ∈ X6w, then Y ∈ F .

We also remark that the estimation of the approximation errors can be greatly simplified for
this legitimate model.

Remark 5.4.4. For every f, g ∈ A, we have

1. f ∨ g 6 f t g;

2. f ∧ g > f u g.

Therefore, there is no approximation error on Y when changing an ∨-gate for an t-gate. For the
same reason, there is no approximation error on N when changing an ∧-gate for an u-gate. This
means that items (5.2) and (5.3) of Definition 5.3.3 hold trivially for A.

The following lemma shows that ε measures the error on the negative distribution when taking
the (X6w,D−, ε)-closure of a family.

Lemma 5.4.5. For every family F ⊆ 2Γ, we have

Pr
N∼D−

[dFe(N) = 0 and dcl(F)e(N) = 1] 6 ε |X6w| .

Proof. We first prove that, for a positive integer t 6 |X6w|, there exists sets X1, . . . , Xt ∈ X6w and
families F0,F1, . . . ,Ft ⊆ 2Γ such that

1. F0 = F ,
3See Chapter 6.
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2. Fi = Fi−1 ∪ {Xi},

3. PrN∼D− [dFi−1e(N ∪Xi) = 1] > 1− ε,

4. Ft = cl(F).

Indeed, if Fi−1 is not closed, there exists Xi ∈ X6w such that PrN∼D− [dFi−1e(N∪Xi) = 1] > 1− ε
but Xi /∈ Fi−1. We let Fi := Fi−1 ∪ {Xi}. Clearly, we have that Ft is closed, and that t 6 |X6w|.
Moreover, by induction we obtain that Fi ⊆ cl(F) for every i ∈ [t]. It follows that Ft = cl(F).
Furthermore, we have

Pr
N∼D−

[dFe(N) = 0 and dcl(F)e(N) = 1] 6
t∑
i=1

Pr [dFi−1e(N) = 0 and dFie(N) = 1]

=
t∑
i=1

Pr [dFi−1e(N) = 0 and Xi ⊆ N]

6
t∑
i=1

Pr [dFi−1e(N ∪Xi) = 0]

6 εt = ε |X6w| .

This immediately implies a bound on the approximation errors on D−.

Lemma 5.4.6. For every f, g ∈ A, we have

Pr
N∼D−

[(f ∨ g)(N) = 1 and (f t g)(N) = 0] 6 ε |X6w| .

Proof. Let F and H be (X6w,D−, ε)-closed families such that f = dFe and g = dHe. We have
f ∨ g = dF ∪ He and f t g = dcl(F ∪H)e. The result now follows from Lemma 5.4.5.

5.5 Bounding the number of minterms with abstract sunflowers

For a family F ⊆ X and ` > 0, let MX ,`(F) denote the family of its minimal sets (under
inclusion) in X`, and letMX (F) =

⋃
`MX ,`(F). The main property of closed families is that the

number of its minimal elements can be bounded by a sunflower-type theorem. This property is used
to show that A is inaccurate and to bound the approximation errors under the positive distribution.

Giving bounds for the abstract sunflower defined below is the core combinatorial challenge of
applying the legitimate model of the previous section. Of course, this usually depends on the specific
choice of the negative distribution D− and the ambient family X . We will thus define next a general
sunflower structure, dependent upon the choice of X , D− and ε.

Definition 5.5.1. We say that a hypergraph H ⊆ X is an (X ,D−, ε)-sunflower if there exists a
set Y ∈ X (called core) such that Y ( S for some S ∈ H and (H `ε Y )D− . When X is the trivial
ambient family, we say that H is a (D−, ε)-sunflower.

Observe that, when D− is p-biased, a (D−, ε)-sunflower is precisely a (p, ε)-robust lopsided
sunflower (see Definition 3.5.5). Analogously to Definition 3.3.5, we may define the extremal function
of this abstract sunflower, which measures the size of the largest set system without this sunflower.

Definition 5.5.2. We define Ex(`,X ,D−, ε) as the size of the largest hypergraph H with vertex set
Γ such that H ⊆ X` and H does not contain a (X ,D−, ε)-sunflower. When X is the trivial ambient
family, we write Ex(`,D−, ε) to denote Ex(`,X ,D−, ε).

Remark 5.5.3. When D− is p-biased, we have Ex(`,D−, ε) = fRL(`, p, ε). (See Section 3.5.2.)
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Lemma 5.5.4. Let F ⊆ X6w be (X6w,D−, ε)-closed. We have |MX ,`(F)| 6 Ex(`,X ,D−, ε).

Proof. For a contradiction, let us suppose that |MX ,`(F)| > Ex(`,X ,D−, ε). SinceMX ,`(F) ⊆ X`,
there exists a (X ,D−, ε)-sunflower S ⊆ MX ,`(F). Let Y be the core of S. By definition, there
exists a set F ∈ S such that Y ( F . Observe that Y ∈ X6w, because F ∈ X6w. Since S is a
(X ,D−, ε)-sunflower and S ⊆ F , we get by Lemma 5.4.3 that (F `ε X)D− . Therefore, we obtain
Y ∈ F because F is closed and Y ∈ X6w. But we must have Y /∈ F , because Y ( F and F is a
minimal element of F . This is a contradiction which concludes the proof.

5.5.1 Examples of abstract sunflower bounds

For comparison, we provide a few examples of abstract sunflowers, along with corresponding
bounds. The first two bounds, proved in [Raz85b] and [AB87], can be obtained from an application
of lopsided sunflowers (see Defintion 3.2.1). They implicitly prove that a lopsided sunflower S with
r petals and core Y satisfies (S `ε Y )D− , for a proper choice of r. This implies Ex(`,X ,D−, ε) 6
(r − 1)`, by Theorem 3.2.3. Furthemore, clique sunflowers are introduced in Chapter 7.

X s(X , `) D− Upper bound Technique Reference

Matchings ` - (log(1/ε) · 2`)2` Lopsided sunflowers [Raz85a]
Cliques

(
`
2

)
(k−1)-cocliques (log(1/ε) · (k−1

k−` )
`)` Lopsided sunflowers [AB87]

2[n] ` p-biased (log ` · log(1/ε)/p)O(`) Robust sunflowers [ALWZ19]
2[n] ` bnpc-slice (log ` · log(1/ε)/p)` Slice sunflowers [Rao20]
Cliques

(
`
2

)
G(n, p) (` · log(1/ε))`/p(

`
2) Clique sunflowers [CKR20]

5.6 Applying the general construction

When applying the general construction, sometimes we need extra assumptions on the positive
distribution D+ and the ambient family X . We say that D+ is (p1, p2, . . . , pw)-bounded if there
exists a sequence (p1, p2, . . . , pw) such that Pr[X ⊆ Y] 6 p` for all X ∈ X` and ` ∈ [w]. We say that
(D+,X ) is (p1, . . . , pw)-viable if the following holds:

1. D+ is (p1, p2, . . . , pw)-bounded;

2. supp(D+) ⊆ X ;

3. X is closed under intersections;

4. For every X ∈ Xi and Y ∈ Xj , there exists Z ∈ Xi+j such that X ∪ Y ⊆ Z.

This will hold for all of our applications of the approximation method. From the minterm bound
(Lemma 5.5.4) of the previous section, we immediately get the following lemma by the union bound.

Lemma 5.6.1. Let F be a (X6w,D−, ε)-closed family. Suppose that (D+,X ) is (p1, p2, . . . , pw)-
viable. For every ` ∈ [w], we have

Pr[∃F ∈MX ,`(F) : F ⊆ Y] 6 Ex(`,X ,D−, ε) · p`.

We can use this bound to show that A = A(X6w,D−, ε) is inaccurate and to bound the errors
on the positive distribution, with an extra assumption on the value of Ex(`,X ,D−, ε) · p`.

Lemma 5.6.2. Suppose that (D+,X ) is (p1, p2, . . . , pw)-viable and that
∑w

`=1 Ex(`,X ,D−, ε) · p` 6
1/2. Then A is inaccurate for (D+,D−).



34 SUNFLOWERS AND THE APPROXIMATION METHOD 5.6

Proof. Let g ∈ A. There exists a (X6w,D−, ε)-closed family F ⊆ X6w such that g = dFe. If
dFe(Y) = 1, there exists ` ∈ [w] and F ∈ MX ,`(F) such that F ⊆ Y. Therefore, we get by the
union bound and Lemma 5.6.1 that

Pr
Y∼D+

[g(Y) = 1] 6
w∑
`=1

Ex(`,X ,D−, ε) · p` 6 1/2.

Thus, we get
Pr[g(Y) = 1] + Pr[g(N) = 0] 6 3/2.

Lemma 5.6.3. Suppose that (D+,X ) is (p1, p2, . . . , pw)-viable. For every f, h ∈ A, we have

Pr
Y∼D+

[(f ∧ h)(Y) = 1 and (f u h)(Y) = 0] 6 2
w∑

`=w/2

Ex(`,X ,D−, ε)p`.

Proof. Let F ,H ⊆ X6w be closed families such that f = dFe and h = dHe. Let us suppose that
(f ∧ g)(Y) = 1 and (f u g)(Y) = 0. By definition, there exists i, j ∈ [w] such that F ∈ MX ,i(F),
H ∈MX ,j(F), and F ∪H ⊆ Y, but there does not exist S ∈ F ∩H such that S ⊆ Y.

Let now J =
⋂
{X ∈ X : F ∪H ⊆ X}. Note that F ∪H ⊆ J ⊆ Y, because Y ∈ X . Furthemore,

J ⊆ Z for some Z ∈ Xi+j . Because X is an ambient family, we thus have that J ∈ Xt for some
t 6 i + j. Therefore, we have i + j > w, otherwise we would have J ∈ X6w, which would imply
J ∈ F ∩H by Lemma 5.4.3, item (3).

We conclude that min {i, j} > w/2, which implies that at least one of F and H is contained in⋃w
`=w/2X`. Applying the bound of Lemma 5.6.1 and the union bound, we get

Pr
Y∼D+

[(f ∧ h)(Y) = 1 and (f u h)(Y) = 0] 6
w∑

`=w/2

p` · (|MX ,`(F)|+ |MX ,`(H)|)

6
w∑

`=w/2

p` · 2Ex(`,X ,D−, ε).

Theorem 5.6.4. Let (D+,D−) be a pair of test distributions for fT ∈ MonBool (Γ). Let (X , w) be
an ambient family. Suppose that (D+,X ) is (p1, p2, . . . , pw)-viable. Suppose moreover that

1. PrN∼D− [γ ∈ N] 6 1− ε for all γ ∈ Γ;

2.
∑w

`=1 Ex(`,X ,D−, ε)p` 6 1/2;

3.
∑w

`=w/2 Ex(`,X ,D−, ε)p` 6 1/(40S);

4. ε 6 1/(|X6w| · 20S).

We have Cmon(fT) > S.

Proof. Let A = A(X6w,D−, ε). Our assumptions imply the following:

• A is a legitimate model (Proposition 5.4.2);

• A is inaccurate on (D+,D−) (Lemma 5.6.2);

• A is a gate-by-gate (1/20S)-approximator for (D+,D−) (Lemmas 5.6.3 and 5.4.6 and Re-
mark 5.4.4).

Therefore, Theorem 5.3.5 implies that the monotone circuit complexity of fT is at least S.
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5.6.1 Monotone circuit lower bounds from abstract sunflower bounds

The following corollary specializes the theorem above to the case where Γ = [n], giving a lower
bound on the monotone circuit complexity of the target function directly from a sunflower bound.

Corollary 5.6.5. Let fT ∈ MonBool ([n]). Let w = w(n) be such that w → ∞. Let (D+,D−) be a
pair of test distributions for fT and suppose D+ is (p1, p2, . . . , pw)-bounded. Suppose moreover that

1. PrN∼D− [γ ∈ N] 6 1− ε for all γ ∈ [n];

2. (Ex(`+ 1,D−, ε)p`+1)/(Ex(`,D−, ε)p`) 6 1/3 for all ` ∈ [w − 1];

3. Ex(1,D−, ε)p1 6 1/3;

4. ε 6 1/
((

n
6w

)
· 20S

)
.

We have Cmon(fT) = Ω
(

min
{
S, (Ex(w/2,D−, ε) · pw/2)−1

})
.

Proof. Set Γ = [n] and let X be the trivial ambient family. We have ε 6 1/(|X6w| · 20S). Finally,
we have

w∑
`=1

Ex(`,D−, ε)p` 6
w∑
`=1

3−w 6 1/2,

and
w∑

`=w/2

Ex(`,D−, ε)p` 6 Ex(w/2,D−, ε)pw/2
∞∑
`=1

3−` = O(Ex(w/2,D−, ε)pw/2).

The result now follows from Theorem 5.6.4, by checking that (D+,X ) is (p1, p2, . . . , pw)-viable.

This result can be used to give an approach to obtaining strongly exponential lower bounds for
a monotone Boolean function. We understand that this is a “speculative” result, and there may not
exist any monotone Boolean function for which the following conditions hold.

Corollary 5.6.6. Let δ > 0 be an absolute constant and set w := δn and ε = 2−2n. Let fT ∈
MonBool ([n]). Let (D+,D−) be a pair of test distributions for fT and suppose D+ is (p1, p2, . . . , pw)-
bounded. Suppose moreover that

1. PrN∼D− [γ ∈ N] 6 1− ε for all γ ∈ [n];

2. Ex(`,D−, ε)p` 6 3−` for all ` ∈ [w].

We have Cmon(fT) = 2Ω(n).
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Chapter 6

An improved monotone circuit lower
bound for a problem in NP

6.1 Introduction

The quest for obtaining lower bounds on the size of monotone Boolean circuits began in the
early years of circuit complexity. To the best of our knowledge, the first lower bound for monotone
circuits on n inputs was 2n by Bloniarz [Blo80], further improved to 4n by Tiekenheinrich [Tie84], for
Boolean functions based on Thkn. The first superlinear lower bound was given in a breakthrough by
Razborov [Raz85b], who proved a nΩ(logn) lower bound on the size of monotone circuits computing
the Clique(n, k) function for k 6 log n with the approximation method. Further progress in this
line of work included the results of Andreev [And85] who proved an exponential lower bound
for another Boolean function in NP based on polynomials. Alon and Boppana [AB87] extended
Razborov’s result by proving an nΩ(

√
k) lower bound for Clique(n, k) for all k ≤ n2/3−o(1). These

state of art monotone circuit lower bounds saw a further quantitative improvement in a work of
Harnik and Raz [HR00] who proved a lower bound of 2Ω((n/ logn)1/3) for an n-variate function in NP
defined using a small probability space of random variables with bounded independence. However,
to this day, the question of proving truly exponential lower bounds for monotone circuits (of the
form 2Ω(n)) for an explicit n-variate function remains open. Truly exponential lower bounds for
monotone formulas were obtained only recently [PR17].

In a recent work of the author, together with Benjamin Rossman and Mrinal Kumar, we
were able to improve the best known lower bound for monotone circuits by proving the first
2Ω(n1/2/(logn)3/2) lower bound for an explicit monotone Boolean function [CKR20]. The function
is based on the same construction first considered by Harnik and Raz [HR00], but our argument
employs the approximation method of Razborov with recent improvements on robust sunflower
bounds (See Section 3.3 and Chapter 4). The following table summarizes the progress of monotone
circuit lower bounds so far.

Reference Boolean function Technique Result

[Blo80] Majority Gate elimination (?) 4n

[Tie84] Based on Thkn
1 Gate elimination (?) 4n

[Raz85b] Clique(n, k) Appr. method w/ sunflowers nΩ(logn)

[And85] Poly(q, c)2 Appr. method w/ lop. sunflowers 2Ω(n1/8−o(1))

[AB87] Poly(q, c) Appr. method w/ lop. sunflowers 2Ω(n1/4−o(1))

[HR00] HR(c, k) Monotone switching lemma 2Ω(n1/3−o(1))

[CKR20] HR(c, k) Appr. method w/ rob. sunflowers 2Ω(n1/2−o(1))

1The function (on n + 1 variables) is Thn−1
n ∨ (xn+1 ∧ Th2

n).
2The Boolean function Poly(q, c) receives as an input a subset of G of [q] × [q], where q is a prime power, and

outputs 1 if there exists a polynomial P ∈ Fq[x] of degree at most c− 1 such that {(i, P (i)) : i ∈ [q]} ⊆ G.

37
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In what follows, we will present the result of [CKR20], which provides an improved monotone
circuit size lower bound for the Boolean function of Harnik and Raz [HR00]. We will apply the
approximation method as described in Chapter 5, applying the slice sunflower lemma of Rao (The-
orem 3.4.3), whose proof is give in Chapter 4. Our application of the approximation method will be
quite similar to that of [AB87] for the Poly(q, c) function, with the crucial difference that we will
employ the slice sunflower lemma instead of lopsided sunflowers for the p-biased distribution. Let
us first define their function.

6.2 The Boolean function of Harnik and Raz

Throughout this chapter, we will suppose that n is a prime power. Moreover, we fix two positive
integers c and k with c < k � n. The Harnik-Raz function HR(c, k) : 2[n] → {0, 1} is defined as
follows. For a polynomial P ∈ Fn[x], we let SP be the set of the valuations of P in each element
of {1, 2, . . . , k} (in other words, SP = {P (1), . . . , P (k)}). Observe that it is not necessarily the case
that |SP | = k, since it may happen that P (i) = P (j) for some i, j such that i 6= j. Finally, we
consider the family F(c, k) defined as

F(c, k) := {SP : P ∈ Fn[x], P has degree at most c− 1 and |SP | > k/2} .

We thus define HR(c, k) as
HR(c, k) := dF(c, k)e.

We now explain the choice of F(c, k). First, the choice for valuations of polynomials with degree
at most c − 1 is explained by a fact observed in [ABI86], which we discuss with more details in
Section 2.2.6. If a polynomial P ∈ Fn[x] with degree c − 1 is chosen uniformly at random, they
observed that the random variables P(1), . . . ,P(k) are c-wise independent, and are each uniform
in [n]. This allows us to define a distribution on the inputs (the positive test distribution) that has
high agreement with HR(c, k) and is easy to analyze. Observe further that, since |F(c, k)| 6 nc, the
monotone complexity of HR(c, k) is at most 2c logn. Later we will chose c to be roughly n1/2, and
prove that the monotone complexity of HR(c, k) is 2Ω(c).

Finally, the restriction |SP | > k/2 is a truncation made to ensure that no minterm of HR(c, k)
is very small. Otherwise, if HR(c, k) had small minterms, it might have been a function that almost
always outputs 1. Such functions have very few maxterms and are therefore computed by a small
CNF. Since we desire HR(c, k) to have high complexity, this is an undesirable property. The fact
that HR(c, k) doesn’t have small minterms is important in the proof that HR(c, k) almost surely
outputs 0 in the negative test distribution (Lemma 6.3.2).

6.3 Test distributions

We now define the positive and negative test distributions. Let D+ be the distribution supported
in 2[n] which chooses a polynomial P ∈ Fn[x] with degree at most c− 1 uniformly at random, and
maps it into the set SP. Suppose that T > 2 is a large absolute constant, to be defined later. Let

p := n−Tc/k and M := bnpc.

Let also D− be the M -uniform distribution in [n]. We will always denote a random sample from
D+ by Y and a random sample from D− by N.

Harnik and Raz proved that HR(c, k) outputs 1 on D+ with high probability.

Lemma 6.3.1 (Claim 4.2 in [HR00]). We have PrY∼D+ [HR(c, k)(Y) = 1] > 1− (k − 1)/n.

Proof. Let P be the polynomial randomly chosen by D+. Call a pair {i, j} ⊆ [k] with i 6= j
coinciding if P(i) = P(j). Because the random variables P(i) and P(j) are uniformly distributed
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in [n] and independent for i 6= j, we have that Pr[P(i) = P(j)] = 1/n for i 6= j. Therefore, the
expected number Num(P) of coiciding pairs is

(
k
2

)
/n. Observe now that HR(c, k)(Y) = 0 if and

only if |P(1), . . . ,P(k)| < k/2, which occurs only if there exists more than k/2 coinciding pairs.
Therefore, by Markov’s inequality (Proposition 2.2.2), we have

Pr [HR(c, k)(Y) = 0] 6 Pr [Num(P) > k/2] 6

(
k
2

)
/n

k/2
=
k − 1

n
.

We now claim that HR(c, k) also outputs 0 on N with high probability.

Lemma 6.3.2. We have PrN∼D− [HR(c, k)(N) = 0] > 1− n−(T/2−1)c.

Proof. By definition, we have that HR(c, k)(N) = 1 only if there exists F ∈ F(c, k) such that F ⊆ N.
Moreover, we have Pr[F ⊆ N] =

( n−|F |
M−|F |

)
/
(
n
M

)
. Observing that |F | > k/2 for all F ∈ F(c, k) and

|F(c, k)| 6 nc, we get by the union bound that

Pr[HR(c, k)(N) = 1] 6 nc ·

( n−k/2
M−k/2

)(
n
M

) 6 nc ·
(
M

n

)k/2
6 n−(T/2−1)c.

As a consequence of Lemmas 6.3.1 and 6.3.2, we obtain that pair D+ and D− are test distribu-
tions for HR(c, k) (because T > 2 by assumption).

Lemma 6.3.3. For large enough n, (D+,D−) is pair of test distributions for HR(c, k).

The following property about D+ will be important when applying the approximation method
in the next section.

Lemma 6.3.4. For every A ⊆ [n] such that and |A| = ` 6 c, we have

Pr
Y∼D+

[A ⊆ Y] 6 (k/n)` .

Proof. Let P be the polynomial with degree at most c − 1 chosen by D+ and suppose that
A ⊆ Y. By definition, we have A ⊆ SP = {P(1),P(2), . . . ,P(k)}. Therefore, there exists indices
{j1, . . . , j`} such that {P(j1),P(j2), . . . ,P(j`)} = A. Since ` 6 c, we get by the c-wise independence
of P(1), . . . ,P(k) that the random variables P(j1),P(j2), . . . ,P(j`) are independent. Because the
random variables P(i) are uniformly distibuted in [n], it follows that

Pr[{P(j1),P(j2), . . . ,P(j`)} = A] =
`!

n`
.

Therefore, we have

Pr[A ⊆ Y] = Pr[A ⊆ {P(1),P(2), . . . ,P(k)}] 6
(
k

`

)
`!

n`
6

(
k

n

)`
.

6.4 Applying the approximation method

We will here apply the general construction of legitimate models of Section 5.4 to the Harnik-
Raz function. We begin with choosing the parameters c and k. Choose B as in Theorem 3.4.3. Let
T = 12B · log 2. We define

k :=

(
n

log n

)1/2

, c =
log 2

T
· k

log n
=

1

12B

(
n

(log n)3

)1/2

.

This implies c = Θ(k/ log n)� k and p = n−Tc/k = 1/2.
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We now choose the parameters to specialize the generalized construction of Section 5.4. Observe
that Γ = [n] in our context. Let us fix

ε := n−2c.

Let (X , c) be the trivial ambient family. In other words, let X` =
([n]
`

)
, for ` ∈ [n], and w = c.

Note that X =
⋃
X` = 2[n], and X6w =

([n]
6c

)
. With this definition for X , a family F ⊆ 2[n] will be

(X6c,D−, ε)-closed if, for every X ⊆ [n] such that |X| 6 c, we have

Pr
N∼D−

[N ∪X is independent in F ] < ε =⇒ X ∈ F .

In the rest of this chapter, we will write closed as a shorthand for (X6c,D−, ε)-closed. We now
let A = A(X6c,D−, ε) be the subposet of MonBool ([n]) determined by X , c,D− and ε (Defini-
tion 5.4.1). Let us check that A is a legitimate model (Definition 5.3.1).

Lemma 6.4.1. The set of approximators 〈A,t,u〉 is a legitimate model in MonBool ([n]).

Proof. Because of Proposition 5.4.2, it suffices to check that PrN∼D− [γ ∈ N] 6 1− ε for all γ ∈ [n].
But PrN∼D− [γ ∈ N] =

(
n−1
M−1

)
/
(
n
M

)
= M/n 6 p = 1/2 < 1− ε.

We now obtain a bound on the approximation errors on the negative distribution directly from
Lemma 5.4.6. (Observe that |X6c| 6 nc, so ε · |X6c| 6 n−c.)

Lemma 6.4.2. For every f, g ∈ A, we have

Pr
N∼D−

[(f ∨ g)(N) = 0 and (f t g)(N) = 1] 6 n−c.

6.4.1 Applying sunflower bounds

With our choice of parameters for c and k, we can use the slice sunflower result of Rao (The-
orem 3.4.3) to give a bound for Ex(`,D−, ε), the extremal number of the abstract sunflower given
by the trivial ambient family and D− and ε (see Definition 5.5.1). With this bound, we can bound
the probability that a sample Y of the positive distribution D+ contains a minimal element of a
closed family F ⊆

([n]
6c

)
. In what follows, we letM`(F) denote the set of minimal elements of F of

size `. Because s(X , `) = ` and X = 2[n], we haveMX ,`(F) =M`(F).

Lemma 6.4.3. Let F ⊆ 2[n] be a closed family. For every ` ∈ [c], we have

Pr[∃F ∈M`(F) : F ⊆ Y] 6 3−`,

when n is sufficiently large.

Proof. Since F is closed, we can use the generic bound of Lemma 5.5.4 to get the upper bound
|M`(F)| 6 Ex(`,D−, ε). Since D− is a subset of [n] of sizeM = bn/2c chosen uniformly at random,
we get that a (M, ε)-slice sunflower (Definition 3.4.2) is also a (X ,D−, ε)-sunflower (Definition 5.5.1).
Thus, we get from Theorem 3.4.3 that

|M`(F)| 6 Ex(`,D−, ε) 6 (2B log(c/ε) log (2 log(c/ε)))` .

Now observe that

2 log(c/ε) = 2 log(n3cc) 6 2 log(n4c) = 8c · log n.

Moreover, we have

log (2 log(c/ε)) = log (8c · log n) =
1

2
log n− 1

2
log logn+O(1) 6

1

2
log n,
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for n sufficiently large. From the previous inequalities, we obtain for n sufficiently large that

|M`(F)| 6
(
4B · c(log n)2

)`
= (n/3k)`.

We now get from Lemma 6.3.4 and the union bound that

Pr[∃F ∈M`(F) : F ⊆ Y] 6 (n/3k)` · (k/n)` = 3−`.

Equipped with this bound, we can now show that A is inaccurate on (D+,D−) and bound the
approximation error on D+.

Lemma 6.4.4. For large enough n, A is inaccurate on (D+,D−).

Proof. Let f ∈ A. Since f ∈ A, there exists a closed family F ⊆ X6c such that f = dFe. If
dFe(Y) = 1, there exists ` ∈ [c] and a minimal element F ∈ M`(F) such that F ⊆ Y. Applying
the bound of Lemma 6.4.3 and the union bound, we get

Pr [f(Y) = 1] 6
c∑
`=1

3−` 6 1/2.

Therefore, we have Pr[f(Y) = 1] + Pr[f(N) = 0] 6 3/2.

Lemma 6.4.5. For every f, g ∈ A, we have

Pr
Y∼D+

[(f ∧ g)(Y) = 1 and (f u g)(Y) = 0] 6 2−Ω(c).

Proof. Let F ,H ⊆ X6c be closed families such that f = dFe and g = dHe. Let us suppose that
(f ∧ g)(Y) = 1 and (f u g)(Y) = 0. By definition, there exists F ∈ M(F) and H ∈ M(H) such
that F ∪H ⊆ Y, but there does not exist S ∈ F ∩H such that S ⊆ Y.

If |F ∪H| 6 c, then F ∪ H ∈ X6c. But, since F and H are closed, we get by item (3) of
Lemma 5.4.3 that F ∪H ∈ F ∩H, a contradiction. So we have |F ∪H| > c. Therefore, at least one
of F and H has size at least c/2. Applying the bound of Lemma 6.4.3 and the union bound, we get

Pr [(f ∧ h)(Y) = 1 and (f u h)(Y) = 0] 6 2

c∑
`=c/2

3−` = 2−Ω(c).

6.4.2 Wrapping up

So far, we proved

• (D+,D−) is a pair of test distributions for HR(c, k) (Lemma 6.3.3);

• A is a legitimate model (Lemma 6.4.1);

• A is inaccurate on (D+,D−) (Lemma 6.4.4);

• A is a gate-by-gate 2−Ω(c)-approximator for (D+,D−) (Lemmas 6.4.5 and 6.4.2 and Re-
mark 5.4.4);

Therefore, Theorem 5.3.5 implies that the monotone circuit complexity of HR(c, k) is 2Ω(c).

Theorem 6.4.6. Any monotone circuit computing HR(c, k) has size 2Ω(c) = 2Ω(n1/2/(logn)3).



42 AN IMPROVED MONOTONE CIRCUIT LOWER BOUND FOR A PROBLEM IN NP 6.6

6.5 Generalized Harnik-Raz function

The lower bound given here for HR(c, k) is actually generalizable to a larger class of monotone
Boolean functions. This generalized class is the one actually considered in [HR00]. The generalization
is as follows. Let Ω be a probability space of k c-wise independent uniformly distributed random vari-
ables. More formally, let Ω ⊆ [n]k be such that, when ω ∼ U (Ω), the random variables ω1, . . . ,ωk
are c-wise independent and uniformly distributed in [n]. For ω ∈ Ω, we let Sω := {ω1, . . . , ωk},
and F(c, k) := {Sω : ω ∈ Ω, |Sω| > k/2}. Finally, the Harnik-Raz function given by Ω is defined as
HR(c, k) := dF(c, k)e. The positive test distribution D+ is defined by choosing a ω ∈ Ω uniformly
at random and returning Sω, and D− is defined just like in Section 6.3. The arguments of the rest
of the chapter follow in the same way for HR(c, k).

The particular example of this construction that we considered in Section 6.2 is given by

Ω = {(P (1), . . . , P (k)) : P ∈ Fn[x], P has degree at most c− 1} .

A proof that this is a probability space of c-wise independent random variables is given in Sec-
tion 2.2.6.

6.6 Further questions

6.6.1 Strongly exponential lower bounds for monotone circuits

We have proved a lower bound of exp(Ω(n1/2−o(1))) on the size of monotone circuits computing
a function in NP. It is natural to ask if we can do better.

Problem 6.6.1. Can we find an explicit monotone Boolean function whose monotone circuit com-
plexity is exp(Ω(n))? In particular, can we do this with the approximation method?

We will now discuss a way to obtain such a lower bound for the Harnik-Raz function itself
from better sunflower bounds. In Chapter 5, we gave a generic lower bound for monotone circuits
depending on a sunflower bound (Corollary 5.6.5). We did not apply this result directly in this
chapter for the sake of clarity, but one can easily check that the proofs of Corollary 5.6.5 and
Theorem 6.4.6 are the essentially same, and indeed give the same lower bounds on monotone circuit
size. In fact, Lemma 6.3.4 is actually showing that D+ is (p1, . . . , pc)-bounded for the sequence
p` = (k/n)`.

The statement of Corollary 5.6.5 highlights that the lower bound of Theorem 6.4.6 depends on
the bounds we have for Ex(c/2,D−, ε), and that the tighter the bounds we have for this extremal
function, the better are our lower bounds for HR(c, k). In particular, it shows that the lower bound
we obtain for HR(c, k) with the approximation method is of the form

Cmon(HR(c, k)) > Ex(c/2,D−, ε)−1 · (n/k)c/2 = 2Ω(c),

where ε is chosen to be n−2c in this chapter, which satisfies the conditions of Corollary 5.6.5.
The inequality above shows that, if we are looking for a truly exponential lower bound, we must

choose c = Ω(n). For concreteness, let us suppose there exists a sufficiently small fixed constant
δ > 0 such that c = δk = δ2n. In this regime, it is not hard to check that we can take ε = 2−2n.
Therefore, in order to prove that Cmon(HR(c, k)) = 2Ω(c), it suffices to show that

Ex(c/2,D−, 2−2n) 6 2−c/2 · (n/k)c/2 = 2n·δ
2 log(1/δ)/2.

Since D− is p-biased with p = n−4c/k, a (D−, ε)-sunflower is equivalent to a robust lopsided sun-
flower, and thus we have Ex(c/2,D−, 2−2n) = fRL(c/2, p, 2−2n). The above discussion can thus
be summarized in saying that, to show a truly exponential lower bound for monotone circuits, it
suffices to solve the following problem.
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Problem 6.6.2. Show that, for some constant δ > 0, we have fRL(δ2n/2, n−4δ, 2−2n) = 2n·δ
2 log(1/δ)/2,

where n is the size of the vertex set.

The best upper bounds we have for fRL are direct applications of bounds for robust sunflowers
(see inequality 3.3). We recall here Remark 3.3.15, which states that the lower bound of Proposi-
tion 3.3.13 for fR(`, p, ε) (the extremal function of robust sunflowers) do not apply when ` = δn.
In particular, this means that, as far as we know, the bounds of the problems above may hold even
for robust sunflowers.

6.6.2 Connections to the monotone switching lemma

The original lower bound of Harnik and Raz [HR00] uses the monotone switching lemma, not
making use of any sunflower lemma. This proof technique is itself a form of the approximation
method, albeit one that is “sunflower-free”.

Problem 6.6.3. Can we prove Theorem 6.4.6 without sunflowers? Or can we prove an improved
monotone switching lemma with robust sunflower bounds?

6.6.3 2-slice distributions

In this chapter, the negative distribution D− was a slice distribution, unlike D+. Can we turn we
choose a slice distribution for D+ and also obtain an exponential monotone circuit lower bound? We
would then show that monotone circuits cannot compute HR(c, k) in a distribution that is supported
in only 2 slices. This is significant because, as proved by Berkowitz [Ber82], the monotone and non-
monotone circuit complexity of Boolean functions are polynomially related under distributions that
are supported in only one slice.

Problem 6.6.4. Prove an exponential monotone circuit lower bound for HR(c, k) using a pair of
slice test distributions.
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Chapter 7

Better bounds for clique

7.1 Introduction

Let Clique(n, k) : Gn → {0, 1} be the Boolean function which, given a graph G with vertex
set [n], outputs 1 if this graph contains a k-clique. This Boolean function is one of the most
fundamental in computational complexity, since Karp [Kar72] proved that deciding if a graph
G contains a clique is NP-complete. In monotone circuit complexity, this function has played a
prominent role. It was the first monotone Boolean function for which a superpolynomial lower
bound on its monotone circuit complexity was given, when Razborov [Raz85b] showed an nΩ(logn)

lower bound on Cmon(Clique(n, k)) for k 6 log n. Soon after, Alon and Boppana [AB87] proved
Cmon(Clique(n, k)) = nΩ(

√
k) for all k ≤ n2/3−o(1). However, this is still far short of the obvious

upper bound of nO(k).
Using the language of Chapter 5, Alon and Boppana’s result is an application of the approxi-

mation method with the following parameters. For a set A ⊆ [n], let KA denote the graph in Gn
such that E(KA) =

(
A
2

)
. (In other words, KA contains a clique on A and no other edges.) We say

that KA is a planted clique. Let D+ denote the distribution which samples A ⊆k [n] and returns
KA. Let D− be the distribution which samples a function c : [n] → [k − 1] uniformly at random,
and maps into the n-vertex graph Gc with edge set {{u, v} : c(u) 6= c(v)}. Alon and Boppana show
a lower bound of nΩ(

√
k) on the size of monotone circuits computing Clique(n, k) on the pair of test

distributions (D+,D−), when k 6 n2/3−o(1).
For many years, Alon and Boppana’s result remained the best lower bound for Clique(n, k) when

k is larger than a polynomial in log n. Recently, Krajíček and Oliveira [KO18] proved that, for an
extension of monotone circuits called monotone circuits with local oracles (monotone CLOs), the
complexity of computing Clique(n, k) on the test distributions D+ and D− considered by Alon and
Boppana is nΘ(

√
k). Moreover, they show that the approximation method of Razborov also applies to

monotone CLOs. This means that, if we wish to prove an nΩ(k) lower bound for Cmon(Clique(n, k)),
we must either consider a different pair of test distributions or avoid the approximation method
altogether.

A recent work of the author and his coauthors [CKR20] overcomes this barrier by making a
different choice for D−. We let D− be the Erdős-Rényi random graph G(n, pk), where pk is a
probability function below the threshold for the occurrence of k-cliques. Other than the choice of
parameters w and ε, our choice of parameters is the same as that of [AB87] for the legitimate model
of Section 5.4. Applying the approximation method, we prove a lower bound of Ω(n(δ/8)·k) to the
monotone circuit complexity of Clique(n, k), when k 6 n1/3−δ, for some absolute constant δ.

The main technical contribution of our result is an upper bound to the extremal function
Ex(`,K,D−, ε) associated with the (K,D−, ε)-sunflower that we call clique sunflowers (Defini-
tion 7.2.1) – here, K is the set of all KA for A ⊆ [n]. Since the negative distribution is p-biased, this
sunflower-type structure bears great resemblance with robust sunflowers (Definition 3.3.2), and our
proof is quite similar to that of Rossman for the latter (see Theorem 3.3.9). Apart from our bound
to clique sunflowers, everything else is a standard application of the approximation method.

45
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We summarize the differences between our application of the approximation method and that
of [AB87] in the following table. We remark that shorly after [AB87], Boppana and Sipser [BS90]
reproved the lower bound of Alon and Boppana for cliques using the standard sunflower of Erdős
and Rado (Definition 3.1.1). Though they obtain the same lower bound but for a more restricted
range of k, their proof benefits of a simplified analysis, which is more common in textbooks. For this
reason, we include it here as well. All the parameters of the generalized construction of Section 5.4
that are omitted here are the same in all the applications.

Ref. D− Range of k Sunflower bound Technique w ε L. bound

[AB87] Gc k 6 n2/3/4 (log(1/ε) · (k−1
k−` )

`)` Lop. sf.
√
k n−

√
k ( n

4k3/2 )
√
k/3

[BS90] Gc k 6 n1/4 `!(log(1/ε)(k−1
k−` )

`)` Sunflowers
√
k n−

√
k nΩ(

√
k)

[CKR20] G(n, p) k 6 n1/3−δ `! log(1/ε)`/p(
`
2) Clq. sf. δ · k n−k Ω(n(δ/8)k)

In this chapter, we will present the lower bound of [CKR20] for the clique function. We will first
present our new notion of “clique-shaped” sunflowers, and then apply the approximation method as
explained in Chapter 5.

7.2 Clique sunflowers

Throughout our discussion about sunflowers on Chapter 3, we made no assumption about the
set of vertices and the “shape” of the edges of the hypergraph. However, sometimes one can obtain
tighter bounds by paying attention to such things. Here we introduce the notion of clique sunflowers,
which is analogous to that of robust sunflowers for “clique-shaped” set systems.

Recall that the planted clique KA denotes the graph in Gn such that E(KA) =
(
A
2

)
. Define

K` = {KA : A ∈
([n]
`

)
}. Note that K =

⋃
K` is the set of all planted cliques in graphs with vertex

set [n]. We also define K6w = {KA : A ⊆ [n], |A| 6 w}, the set of planted cliques of at most w
vertices.

Definition 7.2.1. A hypergraph F with vertex set
(

[n]
2

)
is called a (p, ε)-clique sunflower if F is a

(p, ε)-robust sunflower and F ⊆ K. Equivalently, this means that

Pr
G∼G(n,p)

[∀KA ∈ F : KA 6⊆ G ∪KB] < ε,

where KB =
⋂
F .

Though clique sunflowers may seem similar to robust sunflowers, the importance of this definition
is that it allows us to explore the “clique-shaped” structure of the sets of the family, and thus obtain
an asymptotically better upper bound on the size of sets that do not contain a clique sunflower.

Lemma 7.2.2. Let F ⊆ K` be such that |F| ≥ `!(2 log(1/ε))`(1/p)(
`
2). Then F contains a (p, ε)-

clique sunflower.

Observe that, whereas the bounds for “standard” robust sunflowers (Theorems 3.3.9, 3.3.11,
3.4.3) would give us an exponent of

(
`
2

)
on the log(1/ε) factor, Lemma 7.2.2 give us only an ` at

the exponent. This is a very significant difference for our choice of parameters.
We defer the proof of Lemma 7.2.2 to the end of the chapter (Section 7.5). The proof is based

on an application of Janson’s inequality (Lemma 2.2.4), as in the original robust sunflower lemma
of [Ros14] (Theorem 3.3.9).

7.3 Test distributions

Throughout this chapter, let
pk := 4−1/(k2) · n−2/(k−1).
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Lemma 7.3.1. Let G−∼ G(n, pk). We have Pr[G− contains a k-clique] ≤ 1/4.

Proof. There are
(
n
k

)
≤ nk potential k-cliques, each present in G− with probability p(

k
2) = n−k/4.

By the union bound, we have Pr[G− contains a k-clique] ≤ nk · n−k/4 = 1/4.

Let D+ be the distribution which samples A ⊆k [n] and returns KA. We will always denote a
sample of D+ by Kk. Let D− be the distribution which samples G(n, pk). We will always denote a
sample of D− by G−. From Lemma 7.3.1, we easily obtain the following lemma.

Lemma 7.3.2. The pair (D+,D−) is a pair of test distributions for Clique(n, k).

The following property about D+ is easy to check.

Lemma 7.3.3. For every A ⊆ [n] such that and |A| = `, we have

Pr[A ⊆ Kk] =

(
n−`
k−`
)(

n
k

) 6

(
k

n

)`
.

7.4 Applying the approximation method

We will here apply the general construction of legitimate models of Section 5.4 to the Clique(n, k)
function. Let us fix an absolute constant δ ∈ (0, 1/3), and let us suppose that k is in the range
3 ≤ k ≤ n1/3−δ, Observe that Γ =

(
[n]
2

)
in our context. Let us fix

ε := n−k and w := δk.

It is easy to check that (K, w) satisfies all the properties of an ambient family of Section 5.4,
with s(K, `) =

(
`
2

)
. With this choice for the ambient family, a family of graphs F ⊆ 2([n]

2 ) will be
(K6w, G(n, pk), ε)-closed if, for every A ⊆ [n] such that |A| 6 δk, we have

Pr[∀H ∈ F : H 6⊆ G− ∪KA] < ε =⇒ KA ∈ F .

In the rest of this chapter, we will write closed as a shorthand for (K6w, G(n, pk), ε)-closed. We
now let A = A(K6w, G(n, pk), ε) be the subposet of MonBool

((
[n]
2

))
determined by K, w,G(n, pk)

and ε (Definition 5.4.1). Let us check that A is a legitimate model (Definition 5.3.1).

Lemma 7.4.1. The set of approximators 〈A,t,u〉 is a legitimate model in MonBool
((

[n]
2

))
, when

n is sufficiently large.

Proof. Because of Proposition 5.4.2, it suffices to check that Pr[e ∈ G−] 6 1 − ε for all e ∈
(

[n]
2

)
.

But Pr[e ∈ G−] = pk < 1− ε, when n is sufficiently large.

We now obtain a bound on the approximation errors on the negative distribution directly from
Lemma 5.4.6. (Observe that |K6w| 6 nδk, so ε · |K6w| 6 n−(2/3)k.)

Lemma 7.4.2. For every f, g ∈ A, we have

Pr
[
(f ∨ g)(G−) = 0 and (f t g)(G−) = 1

]
6 n−(2/3)k.

7.4.1 Applying sunflower bounds

We will now use the clique sunflower lemma (Lemma 7.2.2) to give a bound for Ex(`,K,D−, ε),
the extremal number of the abstract sunflower given by K, D− and ε (see Definition 5.5.1). With
this bound, we can bound the probability that a sample Kk of the positive distribution D+ contains
a minimal element of a closed family F .
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Lemma 7.4.3. Let F ⊆ K6w be a closed family. For every ` ∈ [w], we have

Pr[∃F ∈MK,`(F) : F ⊆ Kk] 6 n−δ`.

when n is sufficiently large.

Proof. Since F is closed, we can use the generic bound of Lemma 5.5.4 to get the upper bound
|MK,`(F)| 6 Ex(`,K,D−, ε). Observe that the intersection of two cliques is also a clique, so that,
for any family H ⊆ K, we have

⋂
H ∈ K. Because the distribution D− is G(n, pk), this implies that

a (p, ε)-clique sunflower (Definition 7.2.1) is also a (K,D−, ε)-sunflower (Definition 5.5.1). Thus, we
get from Lemma 7.2.2 that

|MK,`(F)| 6 Ex(`,K,D−, ε) 6 `!(2 log(1/ε))`(1/pk)
(`

2) 6 (`k log n)` · p−(`
2)

k .

Continuing to bound the number above, we get

|MK,`(F)| 6 (δk2 log n)` · 4(`
2)/(

k
2) · n2(`

2)/k−1 6 (n2/3−2δ log n)` · nδ` 6 (n2/3)`,

when n is sufficiently large. We now get from Lemma 7.3.3 and the union bound that

Pr[∃F ∈MK,`(F) : F ⊆ Kk] 6 (n2/3)` · (k/n)` 6 n−δ`.

Equipped with this bound, we can now show that A is inaccurate on (D+,D−) and bound the
approximation error on D+.

Lemma 7.4.4. For large enough n, A is inaccurate on (D+,D−).

Proof. Let f ∈ A. Since f ∈ A, there exists a (K6w, G(n, pk), ε)-closed family F ⊆ K6w such that
f = dFe. If dFe(Kk) = 1, there exists ` ∈ [w] and a minimal element F ∈ MK,`(F) such that
F ⊆ Kk. Applying the bound of Lemma 7.4.3 and the union bound, we get

Pr [f(Kk) = 1] 6
δk∑
`=1

n−δ` = o(1).

Therefore, we have Pr[f(Kk) = 1] + Pr[f(G−) = 0] = 1 + o(1).

Lemma 7.4.5. For every f, g ∈ A, we have

Pr
Kk∼D+

[(f ∧ g)(Kk) = 1 and (f u g)(Kk) = 0] 6 O(n−δk/2).

Proof. Let F ,H ⊆ K6w be closed families such that f = dFe and g = dHe. Let us suppose
that (f ∧ g)(Kk) = 1 and (f u g)(Kk) = 0. By definition, there exists cliques KA ∈ M(F) and
KB ∈M(H) such that KA ∪KB ⊆ Kk, but there does not exist any clique KC ∈ F ∩H such that
KC ⊆ Kk.

Observe that, if KA ∪ KB ⊆ Kk, then KA∪B ⊆ Kk. Moreover, if |A ∪B| 6 w, then KA∪B ∈
K6w. But, since F and H are closed, we get by item (3) of Lemma 5.4.3 that KA∪B ∈ F ∩ H, a
contradiction. So we have |A ∪B| > w. Therefore, at least one of A and B has size at least w/2,
which means that at least one of KA and KB is contained in

⋃w
`=w/2K`. Applying the bound of

Lemma 7.4.3 and the union bound, we get

Pr [(f ∧ h)(Kk) = 1 and (f u h)(Kk) = 0] 6 2

δk∑
`=δk/2

n−δ` 6 O(n−δk/2).

7.4.2 Wrapping up

So far, we proved
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• (D+,D−) is a pair of test distributions for Clique(n, k) (Lemma 7.3.2);

• A is a legitimate model (Lemma 7.4.1);

• A is inaccurate on (D+,D−) (Lemma 7.4.4);

• A is a gate-by-gate O(n−δk/2)-approximator for (D+,D−) (Lemmas 7.4.5 and 7.4.2 and Re-
mark 5.4.4);

Therefore, Theorem 5.3.5 implies that the monotone circuit complexity of Clique(n, k) is Ω(nδk/2).

Theorem 7.4.6. Let δ > 0 be an absolute constant. Any monotone circuit computing Clique(n, k)
has size Ω(nδk/2), when 3 6 k 6 n1/3−δ.

7.5 Proof of Lemma 7.2.2

Our proof of Lemma 7.2.2 will be very similar to the proof of Theorem 3.3.9. First, we consider
the following auxiliary definition.

Definition 7.5.1. Let p, q ∈ (0, 1). Let U ⊆q [n] and G ∼ G(n, p) be sampled independently. A
hypergraph F with vertex set

(
[n]
2

)
is called a (p, q, ε)-clique sunflower if F ⊆ K and, for KB =

⋂
F ,

we have
Pr [∀KA ∈ F : KA * G ∪KB or A * U ∪B] < ε.

The clique KB is called core.

Clearly, a (p, 1, ε)-clique sunflower corresponds to a (p, ε)-clique sunflower. By considering this
stronger notion of sunflowers we will have a stronger induction hypothesis, which makes it easier
to prove the induction step. We will now show a sunflower lemma for (p, q, ε)-clique sunflowers,
which immediatly implies the clique sunflower lemma (Lemma 7.2.2) by Rossman’s bound to the
polynomials s`(t) (Proposition 3.3.8).

Lemma 7.5.2. Let p, q ∈ (0, 1). If F ⊆ K` is such that |F| ≥ s`(log(1/ε))(1/q)`(1/p)(
`
2), then F

contains a (p, q, ε)-clique sunflower.

Proof. The proof is by induction on `. In the base case ` = 1, we have that F is itself a (p, q, ε)-clique
sunflower:

Pr [∀KA ∈ F : KA * G or A * U] = Pr [∀KA ∈ F : A * U]

=
∏

KA∈F
Pr[A * U]

= (1− q)|F| < (1− q)log(1/ε)/q ≤ e− log(1/ε) = ε.

Suppose now that ` ≥ 2 and the result holds for every j ∈ [`− 1]. We will consider two cases.
Case 1. There exists j ∈ [`− 1] and B ∈

(
[n]
j

)
such that

dF (KB) ≥ s`−j(log(1/ε))(1/qpj)`−j(1/p)(
`−j

2 ).

Let T =
{
KA\B : KA ∈ F such that B ⊆ A

}
⊆ K`−j . By the induction hypothesis, there exists a

(p, qpj , ε)-clique sunflower T ′ ⊆ T with core a KD satisfying D ∈
([n]\B
<`−j

)
. We will now show that

F ′ := {KB∪C : KC ∈ T ′} ⊆ F is a (p, q, ε)-clique sunflower contained in F with core KB∪D. Let
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UT ⊆qpj [n]. We have

Pr[∀KA ∈ F ′ : KA * G ∪KB∪D or A * U ∪B ∪D]

= Pr[∀KC ∈ T ′ : KB∪C * G ∪KB∪D or B ∪ C * U ∪B ∪D]

= Pr[∀KC ∈ T ′ : KB∪C * G ∪KB∪D or C * U ∪D]

= Pr[∀KC ∈ T ′ : KC * G ∪KD or C *
{
v ∈ U : {v, w} ∈ E(G) for all w ∈ B

}
∪D]

≤ Pr[∀KC ∈ T ′ : KC * G ∪KD or C * UT ∪D]

< ε.

Therefore, F ′ is a (p, q, ε)-clique sunflower contained in F .
Case 2. For all j ∈ [`− 1] and B ∈

(
[n]
j

)
, we have

dF (KB) 6 s`−j(log(1/ε))(1/qpj)`−j(1/p)(
`−j

2 ).

In this case, we show that F is itself a (p, q, ε)-sunflower with an empty core. Let

µ :=
∑
KA∈F

Pr[KA ⊆ G and A ⊆ U] = |F| q`p(
`
2) > s`(log(1/ε)),

∆ :=
∑

KA,KB∈F
A∩B 6=∅

Pr[KA ∪KB ⊆ G and A ∪B ⊆ U].

Janson’s Inequality (Lemma 2.2.4) gives the following bound:

Pr[∀KA ∈ F : KA * G or A * U] ≤ exp
{
−µ2/∆

}
. (7.1)

We now define the following auxiliary parameter ∆, which ignores the diagonal terms of the sum
defining ∆:

∆ :=
∑

KA,KB∈F
A∩B 6=∅,A 6=B

Pr[KA ∪KB ⊆ G and A ∪B ⊆ U].

We obtain ∆ = µ+ ∆. We bound ∆ as follows:

∆ =
∑

KA,KB∈F
A 6=B,A∩B 6=∅

q2`−jp2(`
2)−(j2)

=
`−1∑
j=1

∑
T∈([n]

j )

∑
KA,KB∈F
A∩B=T

q2`−jp2(`
2)−(j2)

6
`−1∑
j=1

q2`−jp2(`
2)−(j2)

∑
T∈([n]

j )

dF (KT )2.

By double-counting, we get that
∑

T∈([n]
j ) dF (KT ) = |F|

(
`
j

)
. Therefore, applying the bound on
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dF (KT ), we obtain∑
T∈([n]

j )

dF (KT )2 6 s`−j(log(1/ε)) · (1/qpj)`−j(1/p)(
`−j

2 )
∑

T∈([n]
j )

dF (KT )

6 s`−j(log(1/ε)) · (1/qpj)`−j(1/p)(
`−j

2 ) |F|
(
`

t

)
= |F| · p(

j
2)−(`

2)qj−`s`−t(log(1/ε))

(
`

t

)
= µ · p(

j
2)−2(`

2)qj−2`s`−t(log(1/ε))

(
`

t

)
.

We now continue to bound ∆, as follows:

∆ 6 µ

`−1∑
j=1

(
`

j

)
s`−j(log(1/ε)) = µ

(
s`(log(1/ε))

log(1/ε)
− 1

)
.

Therefore, we have ∆ 6 µ s`(log(1/ε))
log(1/ε) , whence we get

µ2

∆
> log(1/ε)

µ

s`(log(1/ε))
> log(1/ε).

Finally, from (7.1) we get

Pr[∀KA ∈ F : KA * G or A * U] ≤ exp
{
−µ2/∆

}
< ε.

7.6 Further questions

7.6.1 Improvements for clique sunflowers

Our bound for the extremal number of clique sunflowers (Lemma 7.2.2) follows closely Rossman’s
original bound for robust sunflowers (Theorem 3.3.9). We expect that a proof along the lines of the
work of Alweiss et al [ALWZ19] and Rao [Rao20] (explained in Chapter 4) should be able to give us
an even better bound, replacing the `! factor with an (log `)` factor. This would extend our nΩ(k)

lower bound for Clique(n, k) to a larger range of k, up to k ≤ n1/2−o(1).

Problem 7.6.1. Give a better bound for (p, ε)-clique sunflowers, along the lines of the work of
Alweiss et al [ALWZ19] and Rao [Rao20].
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