
Complexity Theory of Classical and Quantum

Computational Devices

by

Bruno Pasqualotto Cavalar

Thesis submitted to the University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

March 2024

Contents

List of Tables iv

List of Figures v

Acknowledgments vi

Declaration viii

Abstract ix

Chapter 1: Introduction 1

1.1 Introductory overview of the results 2

1.2 Algorithms and lower bounds for comparator circuits 9

1.2.1 Average-case lower bounds 11

1.2.2 Algorithms for comparator circuits 12

1.3 Constant-depth circuits vs. monotone circuits 14

1.3.1 Constant-depth circuits vs. monotone circuits 17

1.3.2 Non-trivial monotone simulations and their consequences . . 19

1.3.3 Monotone complexity of constraint satisfaction problems . . . 20

1.4 The computational hardness of quantum one-wayness 22

1.4.1 Building one-way state generators from pseudorandom states 25

1.4.2 Fixed-copy one-way state generators 25

1.4.3 A quantum lower bound for PP from a cryptographic assumption 28

1.4.4 Concurrent and further work 29

Chapter 2: Technical overview 31

2.1 Shrinkage for comparator circuits . 32

2.2 Constant-depth circuits vs. monotone circuits 34

2.3 Quantum one-wayness . 39

i

Chapter 3: Algorithms and Lower Bounds for Comparator Circuits

from Shrinkage 43

3.1 Preliminaries . 44

3.1.1 Definitions and notations . 44

3.1.2 Structural properties of comparator circuits 45

3.2 Average-case Lower Bounds . 46

3.2.1 The hard function . 46

3.2.2 Proof of the average-case lower bound 47

3.3 Tight Average-case Lower Bounds from a Nečiporuk-Type Property 50

3.3.1 Proof of Theorem 3.3.1 . 51

3.4 #SAT Algorithms . 54

3.4.1 Memorisation and simplification of comparator circuits 54

3.4.2 The algorithm . 56

3.5 Pseudorandom Generators and MCSP Lower Bounds 57

3.5.1 Proof of the PRG . 57

3.5.2 Proof of the MCSP lower bound 58

3.5.3 Pseudorandom Shrinkage for Comparator Circuits: Proof of

Lemma 3.5.1 . 59

3.6 Learning Algorithms . 61

Chapter 4: Constant-depth circuits vs. monotone circuits 63

4.1 Preliminaries . 64

4.1.1 Notation . 64

4.1.2 Background results . 65

4.2 Constant-Depth Circuits vs. Monotone Circuits 65

4.2.1 A monotone size lower bound for a function in AC0[⊕] 66

4.2.2 A monotone depth lower bound for a graph property in AC0 . 68

4.2.3 Efficient monotone padding for graph properties 70

4.3 Non-Trivial Monotone Simulations and Their Consequences 73

4.3.1 A non-trivial simulation for bounded-depth circuits 73

4.3.2 Non-monotone lower bounds from monotone simulations . . . 74

4.4 Monotone Complexity of Constraint Satisfaction Problems 77

4.4.1 Definitions . 77

4.4.2 Basic facts about CSP-SAT 79

4.4.3 A monotone dichotomy for CSP-SAT 81

4.4.4 Some auxiliary results . 86

4.4.5 Consequences for monotone circuit lower bounds via lifting . 89

ii

4.5 Schaefer’s Theorem in Monotone Complexity 90

4.5.1 Connectivity and generation functions 90

4.5.2 Proof of reduction lemmas . 91

4.5.3 Monotone circuit upper bounds 92

Chapter 5: On the Computational Hardness of Quantum One-Wayness 95

5.1 Preliminaries . 96

5.1.1 Basic quantum computing . 96

5.1.2 Computational complexity . 97

5.1.3 Quantum information theory and cryptography 98

5.1.4 Probability distributions . 101

5.1.5 Approximate t-designs . 103

5.2 One-way state generators from compressing pseudorandom states . . 103

5.2.1 Unconditional OWSGs from efficient approximate t-designs . 108

5.3 Breaking one-way state generators with a PP oracle 110

Chapter 6: Conclusions and open problems 119

6.1 Comparator circuits . 119

6.2 Constant-depth circuits vs. monotone circuits 120

6.3 Quantum one-way state generators 122

Bibliography 125

Appendix A: Appendix to Chapter 3 141

A.1 An efficient simulation of B2-formulas by comparator circuits 141

Appendix B: Appendices to Chapter 4 143

B.1 A Lower Bound for 3-XOR-SAT Using the Approximation Method . 143

B.2 Background on Post’s Lattice and Clones 145

iii

List of Tables

1.1 A summary of what is known about the computational and information-

theoretic nature of quantum cryptographic primitives 27

B.2 Table of closed classes of Boolean functions and their bases 147

iv

List of Figures

1.1 Main non-monotone circuit and complexity classes studied and their

relationships. 5

1.2 An example of a comparator circuit 9

1.3 A comparator circuit computing ⊕,¬⊕, 0, 1. 10

1.4 Illustration of the results of Chapter 4 18

4.1 Graph of all closed classes of Boolean functions 82

4.2 Illustration of Theorem 4.4.9 . 84

4.3 Illustration of Theorem 4.4.13 . 87

A.1 A comparator circuit computing ∧,∨,¬∧,¬∨. 142

A.2 A comparator circuit computing x ∨ ¬y,¬(x ∨ ¬y), x ∧ ¬y,¬(x ∧ ¬y). 142

v

Acknowledgments

I would like to thank my supervisor Igor Oliveira for his earnest dedication

and guidance through all these years. Igor was extremely generous with his time

and resources, willing to offer help and advice on both my technical queries as well

as my most banal ones. He always went out of his way to make sure I had the

best possible research opportunities, and was consistently confident in my abilities

– being a constant source of encouragement. His seemingly endless interest and

knowledge in all things complexity theory was also a source of inspiration.

A thank you to my co-advisors Tom Gur, Torsten Mütze and Sayan Bhat-

tacharya, who provided encouragement and insight in our annual meetings. I also

wish to thank my examiners Christian Ikenmeyer, Srikanth Srinivasan and Matthias

Englert for agreeing to help with this final stage.

I’m grateful to my coauthors Zhenjian Lu, Eli Goldin, Matthew Gray, Peter

Hall, Yanyi Liu and Angelos Pelecanos for the fun discussions and for working

together with me in some of the work composing this thesis. During my studies,

I benefited from the lively research environment of the Simons Institute for the

Theory of Computing during the Meta-Complexity program, and from the wonderful

hospitality of Mika Göös at EPFL and Susanna Rezende at Lund and Copenhagen. I

also wish to thank my colleagues at the Complexity Network UK, in whose meetings

many of these ideas were first presented, and Arkadev Chattopadhyay for important

early technical conversations.

My time at Warwick was coloured by the friendship of Marcel, Ninad, Sathya,

Ian and Henry, whom I thank for making these years cheerful. A special thanks to

Marcel and Thamiris for helping with our move to Coventry – settling in during the

vi

lockdown was much easier due to their help, and made it possible for us to quickly

feel at home.

It was an honour to serve with the folks at the Christian Postgraduates

and Staff Network at Warwick (CPS). Thanks to Anja and Tim for organising the

Forming a Christian Mind Fellows Programme in Cambridge – during that time

I received a rare Christian perspective on scholarship, which I will carry through

the years. Thanks to Martin Herdegen for inviting me to this world and for his

continued friendship.

My time in the UK wouldn’t have been nearly as enjoyable were it not for

the love of my brothers and sisters at Solihull Presbyterian Church. I thank our

presbyters Stephen, Falko and Jonny for their careful oversight.

I thank my parents for their persistent support and prayers for this work.

My dear wife is most of all to be thanked for her love and resilience through these

sometimes difficult years. She continued to believe in me and in the significance of

this work even when I felt discouraged.

Above all flesh I thank the Creator for carefully hiding the secrets of theo-

retical computing – not too deep that we couldn’t find them, nor too shallow that

we would have no joy in pursuing them. It is my duty and my joy to praise Him for

His glory, and with His help I will do so to the end of my days.

vii

Declaration

This thesis is submitted to the University of Warwick in support of my ap-

plication for the degree of Doctor of Philosophy. It has been composed by myself

and has not been submitted in any previous application for any degree. The work

presented was carried out by the author.

Parts of the thesis are joint work which have been published in peer-reviewed

conferences and journals, all with substantial work carried out by the author:

1. Algorithms and Lower Bounds for Comparator Circuits from Shrink-

age (Chapter 3)

Bruno P. Cavalar, Zhenjian Lu

Proc. 13th Innovations in Theoretical Computer Science Conference (ITCS),

LIPIcs, Vol. 215, 34:1–34:21

Algorithmica, 85(7):2131–2155, 2023

2. Constant-Depth Circuits vs. Monotone Circuits (Chapter 4)

Bruno P. Cavalar, Igor Carboni Oliveira

Proc. 38th Computational Complexity Conference (CCC), LIPIcs, Vol. 264,

29:1–29:37

Chapter 5 is based on a unpublished preprint of the author, also with substantial

work carried by the author:

3. The Computational Hardness of Quantum One-wayness (Chapter 5)

Bruno P. Cavalar, Eli Goldin, Matthew Gray, Peter Hall, Yanyi Liu, Angelos

Pelecanos

arXiv, 2023, https://arxiv.org/abs/2312.08363

viii

https://arxiv.org/abs/2312.08363

Abstract

This thesis investigates various computational devices from the perspective
of computational complexity theory, a scientific discipline concerned with the intrin-
sic limits and possibilities of algorithms. Most of our results are new state-of-art
complexity lower bounds, which are mathematical proofs that certain kinds of com-
putational devices do not exist.

Our first investigation is on comparator circuits. We show the first average-
case lower bounds for comparator circuits, which are a significant strengthening
of worst-case circuit lower bounds. Our technical study of comparator circuits also
enables us to develop, for the first time, algorithms that analyse comparator circuits,
such as satisfiability algorithms, pseudorandom generators and learning algorithms.

We then discuss the relative power of constant-depth circuits and monotone
circuits, a very basic and fundamental question in circuit complexity. We show that
there exist monotone problems that can be computed by constant-depth circuits,
whereas no monotone formula of feasible size can compute them, extending a clas-
sical result of Okol’nishnikova (1982) and Ajtai and Gurevich (1987). We also show
that, when augmented with parity gates, constant-depth circuits are stronger than
monotone circuits, coming close to solving a conjecture of Grigni and Sipser (1992).
Our study ends with a careful analysis of current techniques which demonstrates
their inability to improve our results.

In our latter investigations, we switch to quantum computation, and investi-
gate one-way state generators. We show a tighter connection between this primitive
and pseudorandom states, and we prove that if one-way state generators exist, then
a large class of natural problems (such as computing the permanent of matrices)
cannot be solved efficiently by quantum algorithms. This result presents the first
complexity-theoretic consequence from the existence of one-way state generators.
We also prove that a fixed-copy variant of one-way state generators exists uncondi-
tionally, irrespective of any complexity lower bound.

ix

It is the glory of God to conceal a matter, but the

glory of kings is to search out a matter.

Proverbs 25:2

Chapter 1

Introduction

The overarching goal of computational complexity theory is to obtain a firm

grasp over what makes computation hard. This question can be relativised with

respect to various types of resources and computational models. Some of these are

(or are conjectured to be) strictly more powerful than others, whereas some can

be shown (or given evidence) to be incomparable. The brief history of complexity

theory has also demonstrated that the complexity-theoretic study of such models

and resources, more often than not, leads to algorithmic ideas in various fields1.

In this thesis, we will investigate the phenomenom of computational hardness

from the perspective of various computational models. We will also have a chance to

observe how these ideas can be used in algorithm design and quantum cryptography.

We will concern ourselves with the following types of questions:

1. What kinds of computational problems are hard?

2. Which algorithmic insights can be extracted from hardness results for compu-

tational models?

3. What is the relative power of different computational models?

4. Is complexity necessary for computational applications?

We will now give a brief summary of the computational models we will study

and how the things we will discover about them answer in specific ways the very

broad questions asked above. Later in this chapter we will introduce the models

more formally and explain the results with more technical details, but for now we

aim to give a big picture view of our work and the main concepts involved.

1See [HO02] on how algorithmic ideas are often hidden inside complexity results.

1

1.1 Introductory overview of the results

We begin with a very brief review of circuit models and some classical re-

sults about them. The reader unfamiliar with this material is recommended to

consult [Juk12] for more details.

Boolean circuits: size and depth. The most basic and paradigmatic model of

computation we will concern ourselves with is that of Boolean circuits. A Boolean

circuit is a directed acyclic graph, in which the sources are labelled with literals

x1, . . . , xn,¬x1, . . . ,¬xn, and each of the remaining vertices is labelled with an el-

ement of a fixed set of logical operations (typically the logical operators {∨,∧}).2

The source vertices are called inputs, as they represent naturally the n-bit binary

input that is being received by the circuit, and the other vertices are called gates.

The sink vertices (or, as in most cases in this work, the sink vertex) represent the

outcome of the computation that logically follows from the input vertices (sources).

We will typically consider that each gate has fan-in (that is, in-degree) constant,

but sometimes we may allow unbounded fan-in – we will be explicit about which

case.

One important technical distinction between general algorithms (by which

we mean Turing machines) and circuits is that the latter have a fixed input size.

As a consequence, when we say that a circuit or circuit class solves a problem L,

we formally mean that there exists a sequence of circuits C1, C2, . . . , one for each

input length, such that Cn(x) = 1 ⇐⇒ x ∈ L for all x ∈ {0, 1}n. The fact that

we allow one different circuit for each input length is called non-uniformity. When

the circuit Cn can be computed in polynomial-time given n (in unary), we say that

the circuit sequence is uniform. The distinction between uniform and non-uniform

circuits, however, will rarely be important in this work, as most of our algorithms

will be uniform, and most of our lower bounds will also hold for the non-uniform

variants of the corresponding circuit models. Whenever our results deviate from

this pattern, we will explicitly note it.

Boolean circuits have the advantage (over Turing machines) of representing

algorithms with an object as concrete as a finite graph, naturally lending themselves

to different complexity parameters to be studied, as well as natural restrictions on

the model. Perhaps the most basic parameter one can study about circuits is circuit

size, which is equal to the number of vertices in the circuit. Conveniently, it is a

2Note that it may not be necessary in general to have more than one input labelled with the
same literal. However, if we require every input vertex to have bounded degree, then it may be
necessary to repeat the labels.

2

classical result in computational complexity that one does not lose much when going

from time complexity of Turing machines to circuit size – any algorithm that runs

in time T can be implemented by a circuit of size O(T log T). Conversely, uniform

polynomial-size circuits can do nothing that polynomial-time algorithms cannot.

Another significant parameter we will study is circuit depth, which is the

length of the longest path from a source to a sink. Circuit depth allows us to define

a prominent family of complexity classes known as the NC hierarchy, which we will

have the opportunity to study in this work. A circuit will be called an NCi circuit

if it has polynomial-size and depth O(log n)i. Importantly, we require the fan-in to

be constant. This model corresponds to parallel algorithms, where the depth is the

runtime of the algorithm, here running on a polynomial number of processors. Of

course, the class NC of problems solvable by an NCi circuit for some fixed i can also

be solved by polynomial-size circuits.

The world between NC1 and NC2. The first two levels of this hierarchy are

already very interesting. It is known that NC1 circuits are equivalent to polynomial-

size formulas, which are circuits with the restrictions that every gate and every

input literal has fan-out at most 1 (fan-out is the outdegree of the vertex). Though

this circuit model is capable of solving a host of arithmetic problems [CDL01], it’s

conjectured that it is not able to solve problems as simple as deciding if a directed

graph is connected.

The second level of the NC hierarchy, however, is surprisingly powerful. Be-

tween NC1 and NC2 are found a number of space-bounded complexity classes, such as

polynomial-size nondeterministic branching programs and span programs, which are

capable of solving connectivity problems on graphs and solve linear systems modulo

a prime field, respectively. These computational models can be defined as follows.

A nondeterministic branching program is a Boolean circuit with the restriction that,

in each ∧-gate, at least one of the incoming wires is connected to an input. Given

a field F, a F-span program is a matrix M with entries in F where each of the rows

are labelled with a literal. The matrix is said to accept an input x if the rows of M

whose labels are consistent with x span the vector 1. The size of the span program

is the number of rows of M . Finally, we remark that circuits of the NC2 type are also

capable of computing the determinant of a rational matrix [Mul87]. (See [Coo85]

for an exploration of some complexity classes and problems between NC1 and NC2.)

3

Comparator circuits and the power of parallelism. How powerful is paral-

lelism? In the arithmetic world3, it is known that arbitrary polynomial-size arith-

metic circuits can have their depth reduced to O(log2 n) with only a polynomial

blow-up in the size [VSBR83]. In other words, we have P = NC2 in the algebraic

world. A similar result is not known for Boolean circuits, and in fact we do not

expect all polynomial-size circuits to be parallelisable.

Perhaps the weakest circuit model below P which we have evidence for not be-

ing parallelisable is that of comparator circuits. Comparator circuits are a powerful

circuit model corresponding to computations that can be represented as a sequence

of comparisons between numbers. Because of their inherently sequential nature, they

are conjectured to be unparallelisable [MS92] – indeed, oracle separations between

NC and comparator circuits have been found [CFL14].

As we shall see discuss in more details in Section 1.2 below, comparator

circuits can be equivalently seen as Boolean circuits with fan-out 2, which immedi-

ately gives us that comparator circuits can simulate NC1 (since, as we noted above,

NC1 circuits are equivalent to polynomial-size circuits of fan-out at most 1). More

surprisingly, comparator circuits can also simulate nondeterministic branching pro-

grams, and solve a host of other problems for which no parallel algorithms are

known. Comparator circuits, then, seem to pick up from NC1 but follow a different

trajectory, incomparable to that of the NC hierarchy (see Figure 1.1).

Even though comparator circuits have been studied since the work of Mayr

and Subramanian [MS92], only recently have lower bounds been shown for this

model [RPRC16, GR20]. These results, however, are all worst-case lower bounds,

and do not rule out the possibility that small comparator circuits are able to give

the right answer in a large proportion of the inputs. Such stronger lower bounds are

called average-case lower bounds. More generally, the study of average-case hard-

ness is a vibrant strand of complexity theory [BT06], with numerous applications

(e.g., cryptography [Hir22a]).

Our work in Chapter 3, which we will summarise in detail soon below (Sec-

tion 1.2), will give the first average-case lower bounds for comparator circuits match-

ing worst-case bounds [GR20]. We will also be able to show optimal average-case

lower bounds for a large family of circuit models between NC1 and NC2, for which

3Discussing arithmetic circuit complexity is beyond the scope of this work, and we mention it here
simply to give a larger context of our results. For the sake of this introduction, it suffices to say that
arithmetic circuits are circuits working on a fixed field F with multiplication and addition gates.
We interpret each gate as computing a multivariate polynomial over F. Here, one is interested
in knowing which polynomials one can represent with efficient circuits (e.g., polynomial-size or
polylogarithmic depth). We point the reader to [SY10] for a more detailed introduction to the
topic.

4

AC0

NC1

NC2

CC

NBP

SPF

P

BQP

(?)

NP

PP

Figure 1.1: Main non-monotone circuit and complexity classes studied and their relation-
ships. We denote polynomial-size comparator circuits by CC. Moreover, we denote nondeter-
ministic branching programs by NBP, and SPF denotes F-span programs. Uniformly, these
circuit classes are also known as NL (nondeterministic logspace) and ModF-L (logspace modu-
lar), respectively. The containment (⋆) is only known to hold non-uniformly [Wig94, BG99],
though NBPs are simulatable by NC2 circuits also in the uniform case. All the other contain-
ments are known to hold both in the uniform and non-uniform cases. We denote by BQP
the class of decision problems solvable by polynomial-size quantum circuits. The complex-
ity class PP is defined in Section 1.4.3; BQP ⊆ PP is proved in [ADH97]. The relationship
between NP and BQP is unknown.

no optimal average-case lower bounds were known before. We will also give worst-

case lower bounds on comparator circuits computing MCSP, a Boolean function of

central importance in complexity theory, thus expanding the class of functions for

which we can show comparator circuit lower bounds. These results will form an

answer to Question 1 above, relativised to comparator circuits.

With our techniques, we will also obtain satisfiability algorithms, pseudoran-

dom generators and learning algorithms for comparator circuits, addresing Ques-

tion 2 above. We remark that those algorithms deal with some of the most fun-

damental problems in computer science. Satisfiability algorithms are of significant

importance to practical applications [BHvMW21], and indeed most algorithms used

in practice are developed for CNFs, a significantly weaker circuit model. Moreover,

the construction of pseudorandom generators is a crucial step in the fundamental

5

theoretical question of derandomisation.

Constant-depth circuits and monotone circuits. When we introduced the

NC hierarchy, we did not talk about NC0 circuits. That’s for the obvious reason

that, being of constant-depth and constant fan-in, NC0 circuits cannot compute

functions that depend on all of the inputs, so they are quite limited with respect to

decision problems. However, it’s possible to speak meaningfully of constant-depth

circuits by allowing unbounded fan-in gates – this ‘extremely parallel’ circuit class

is known as AC0.

It’s well known that AC0 circuits also have severe limitations of their own.

They are not even able to compute the parity of its input bits – in fact, it’s possible

to show exponential size lower bounds for constant-depth, unbounded fan-in circuits

that compute Parity [H̊as86]. Many lower bounds and other results have been proved

for AC0 since then, making this one of the most well-understood circuit classes. It’s

also not hard to see that AC0 ⊆ NC1.

Alongside AC0, another circuit class that has received a lot of attention

throughout the years is that of monotone circuits, which are circuits without nega-

tion (¬) gates. Exponential lower bounds are known for monotone circuits [AB87],

and, for subclasses of monotone circuits (like monotone formulas), nearly best-

possible lower bounds are known [PR17]. However, despite monotone computation

being well-understood from this perspective, little is known about the relationship

between AC0 circuits and monotone circuits.

In Chapter 4, we will address Questions 1 and 3 above as we investigate

the very basic question about the relative power of constant-depth circuits and

monotone circuits, first asked by Grigni and Sipser [GS92]. As we will describe

below in Section 1.3, we will be able to show, for the first time, that constant-depth

circuits extended with ⊕-gates can solve problems that polynomial-size monotone

circuis cannot, coming close to solve a conjecture of Grigni and Sipser [GS92]. We

will also be able to vastly extend a classical result of Okol’nishnikova [Oko82] and

Ajtai and Gurevich [AG87], by proving that AC0 circuits are more powerful than

monotone formulas of quasipolynomial size. Lastly on that direction, we will show

surprising consequences from assuming that better separations between monotone

and non-monotone circuits are impossible. One such surprising consequence will be

the collapse of the NC hierarchy.

Our discussion in Chapter 4 will also demonstrate that, within the world

between NC1 and NC2, a ‘hardness transition’ seems to occur: whereas NC2 contains

problems that monotone circuits require exponential size to compute [GKRS19], no

6

such problems are known within NC1. Bringing such lower bounds closer to NC1 is

one of the main technical challenges left open by our work.

Our work will also give the first thorough investigation of the monotone

complexity of Boolean Constraint Satisfaction Problems (CSPs), proving monotone

correspondents of a classical result of Schaefer [Sch78]. The relevance of this result

for the previous discussion is that most of the monotone circuit lower bounds ob-

tained via lifting theorems – a prominent technique in monotone circuit complexity

– also apply to this class of problems (see, e.g., [dRGR22, GKRS19]). Our analysis

will show that the transition mentioned above cannot be overcome via CSPs: every

CSP that is hard for monotone circuits also requires the power of non-monotone

span programs to be computed. We remark that CSPs are a generalisation of the

NP-complete Satisfiability problem, and they have been, and still are, the subject of

much investigation, both in theory and in practice [RvBW06]. From a theoretical

point of view, a major highlight is the recent discovery that that every CSP (Boolean

or not) is either NP-complete or solvable in polynomial time [Zhu17, Bul17], a cul-

mination of a long line of works beginning with Schaefer [Sch78].

Though we will mostly focus on the relationship between constant-depth

circuits and general monotone circuits, we remark that a separation between com-

parator circuits and monotone comparator circuits is known [RPRC16].

The complexity of quantum one-wayness In our last technical chapter (Chap-

ter 5), we will switch gears slightly to consider quantum algorithms. Quantum com-

puting is a strenghtening of randomised computation that allows computation to

evolve by means of unitary transformations [For03]. Conveniently, this can also be

represented with a circuit model, where the gates are labelled by an element of a

fixed set of unitary matrices. The complexity class of problems solvable by uni-

form polynomial-size quantum circuits is denoted by BQP (also denoted quantum

polynomial time). Quantum computers carry the promise of efficiently computing

more than we expect to be able to do with classical computers. One prominent

such example is that of factoring integers [Sho97] – it’s possible to solve this task in

quantum polynomial time, whereas it’s conjectured that no polynomial-time clas-

sical algorithm can do the same. Indeed, the security of the RSA cryptographic

system depends on the hardness of that task, which has motivated the search for

cryptographic protocols that are safe against quantum attacks, possibly based also

on quantum complexity-theoretic assumptions.

A fundamental cryptographic task for classical computations is that of one-

way functions, corresponding to easy-to-compute but hard-to-invert computations.

7

It’s easy to show that, if one-way functions exist, then NP does not admit polynomial-

time randomised algorithms (i.e., NP ̸⊆ BPP). In addition, a long list of clas-

sical results show an equivalence between one-way functions and other crypto-

graphic and computational tasks, such as pseudorandom generators [HILL99], pseu-

dorandom functions [GGM84], and private-key encryption [GM84]. More recently,

complexity-theoretic characterisations have been found for the existence of one-way

functions [LP20, IRS21, HIL+23]. The complexity-theoretic landscape of quantum

one-wayness is, however, much less understood.

In Chapter 5, we will study a cryptographic primitive called one-way state

generators, which has been recently proposed [MY22b] (see Section 1.4 below for

a more detailed overview to our results). We will first demonstrate tighter con-

nections between this primitive and pseudorandom states, a quantum analogue of

pseudorandom generators. We will employ those connections to demonstrate that,

when the adversary is only given a limited number of copies of the output, one-way

state generators exist unconditionally. No analogous result is known for classical

computation; this is due to the fact that, in quantum algorithms, it’s impossible to

copy states.

In our final result, we will be able to show the first complexity-theoretic

consequences from the existence of one-way state generators. We will show that,

if one-way state generators exist, then the permanent of integer matrices cannot

be computed by polynomial-time quantum algorithms (more generally, we obtain

PP ̸⊆ BQP), thus answering Question 4 for this cryptographic primitive. Unlike the

previous chapters, where unconditional lower bounds for the corresponding compu-

tational models were given, the generality and power of quantum algorithms makes

it very difficult for current techniques to show unconditional lower bounds. Our

result will show that, based on cryptographic assumptions, it’s at least possible to

show the intractability of relevant computational tasks for this model. We remark

that we will only be concerned with uniform quantum circuits in this work, and our

lower bounds therefore will also hold only for this model.

We will now give a more detailed outline of each our main results separately.

In Chapter 2, we will describe the main techical ingredients that compose our results.

Finally, in Chapter 6, we will conclude by describing a few directions and open

problems that could build on this work.

8

1.2 Algorithms and lower bounds for comparator cir-

cuits

We now describe our work in Chapter 3, which will be concerned with com-

parator circuits. A comparator circuit is a Boolean circuit whose gates are compara-

tor gates, each of which maps a pair of inputs (x, y) to (x ∧ y, x ∨ y), and whose

inputs are labelled by a literal (i.e., a variable xi or its negation ¬xi). We also allow

constants 0 and 1 in the circuit. A convenient way of representing a comparator

circuit is seen in Figure 1.2. We draw a set of horizontal lines, each of which is

called a wire and is labelled by an input literal. The gates are represented as a

sequence of vertical arrows, each of which connects some wire to another. The tip of

the arrow is the logical disjunction gate (∨), and the rear of the arrow is the logical

conjunction gate (∧). One of the wires is selected to represent the Boolean value of

the computation. The size of the circuit is the number of gates in the circuit. A

more formal definition is given in Section 3.1.1 of Chapter 3.

x ▲

x ▲

y • x ∧ y •

¬z • x ∧ ¬z ▼ f(x, y, z) •

0 ▼ f(x, y, z)

Figure 1.2: A comparator circuit with 3 inputs, 5 wires and 4 gates. The last wire computes
f(x, y, z) = (x∧ y)∨ (x∧¬z). We note that the same function could be computed with less
wires if we removed the last wire (labelled with 0), but we decided to keep this inefficient
construction for the sake of presenting a comparator circuit with full generality.

Comparator circuits can be viewed as a restricted type of circuit in which

the gates have fan-out exactly two. It is easy to see that comparator circuits can

efficiently simulate Boolean formulas over {∧,∨,¬} with no overhead4, and it’s

also possible to show that comparator circuits can simulate Boolean formulas over

the full binary basis with only a constant factor blow-up in the size (we give a

full proof of this observation in Appendix A.1). Moreover, it is also known that

polynomial-size comparator circuits can even simulate nondeterministic branching

programs [MS92] with a polynomial overhead only. On the other hand, compara-

4As a comparison, note that there are linear-size comparator circuits for Parity (see Figure 1.3
or Theorem A.1.2), whereas any Boolean formula computing Parity has size Ω(n2) [Hra71].

9

tor circuits appear to be much stronger than formulas5, as it is conjectured that

polynomial-size comparator circuits are incomparable to NC [MS92]. Evidence for

this conjecture is that polynomial-size comparator circuits can compute problems

whose known algorithms are inherently sequential, such as stable marriage and lex-

icographically first maximal matching [MS92], and there is an oracle separation

between NC and polynomial-size comparator circuits [CFL14]. Moreover, Robere,

Pitassi, Rossman and Cook [RPRC16] showed that there exists a Boolean function in

mNC2 not computed by polynomial-size monotone comparator circuits6. For these

reasons, comparator circuits are likely to be incomparable to NC, and polynomial-

size span programs, which are contained in NC2, are not expected to be stronger

than polynomial-size comparator circuits.

x • x ∧ ¬y • 0

¬x ▲ ¬x ∨ y • ¬(x⊕ y)

y • ¬x ∧ y ▼ x⊕ y

¬y ▼ x ∨ ¬y ▼ 1

Figure 1.3: A comparator circuit computing ⊕,¬⊕, 0, 1.

Despite the importance of comparator circuits, we don’t know much about

them. Though it is easy to see that Parity can be computed by comparator cir-

cuits with O(n) wires and gates (see Figure 1.3 or Appendix A.1), the best known

comparator circuit for Majority uses O(n) wires and O(n log n) gates [AKS83]. We

don’t know if there is a linear-size comparator circuit for Majority7, whereas, for the

weaker model of nondeterministic branching programs, superlinear lower bounds are

known [Raz90]. Structural questions about comparator circuits have also received

some attention in recent years [GKRS19, KSS18].

The first superlinear worst-case lower bound for comparator circuits was

recently obtained by Gál and Robere [GR20], by an adaptation of Nečiporuk’s ar-

gument [Nec66]. Their proof yields a lower bound of Ω
(
(n/ log n)1.5

)
to comparator

circuits computing a function of n bits. For monotone comparator circuits, expo-

nential lower bounds are known [RPRC16].

In Chapter 3, we exploit structural properties of small-size comparator cir-

cuits in order to prove the first average-case lower bounds and design the first circuit

5Recall that the class of polynomial-size formulas is exactly NC1.
6Comparator circuits are monotone if they don’t have negated literals.
7As opposed to a sorting network, note that a comparator circuit can use multiple copies of the

same input literal.

10

analysis algorithms for small comparator circuits. Developing circuit analysis algo-

rithms is a crucial step for understanding a given circuit class [Oli13, Wil14a], and

are often obtained only after lower bounds have been proven for the class8. Many

well-studied circuit classes have been investigated from this perspective, such as AC0

circuits [IMP12], De Morgan formulas [Tal15], branching programs [IMZ19], ACC

circuits [Wil14b], and many others (see also [CKK+15, ST17, KKL+20]). Our work

commences an investigation of this kind for comparator circuits.

1.2.1 Average-case lower bounds

Chapter 3 begins with the first average-case lower bound against comparator

circuits.

Theorem 1.2.1 (Average-case Lower Bound). There exist constants c, d ⩾ 1 such

that the following holds. For any k ⩾ c · log n, there is a polynomial-time computable

function fk such that, for every comparator circuit C with at most

n1.5

d · k ·
√

log n

gates, we have

P
x∈{0,1}n

[fk(x) = C(x)] ⩽
1

2
+

1

2Ω(k)
.

An important feature of the lower bound in Theorem 1.2.1 is that it matches

the Ω
(
(n/ log n)1.5

)
worst-case lower bound of [GR20], in the sense that we can

recover their result (up to a multiplicative constant) by setting k = O(log n).

Using ideas from the proof of the above average-case lower bound, we also

show average-case lower bounds against various models that tightly match their

state-of-the-art worst-case lower bounds, such as general formulas, (deterministic-,

nondeterministic-, parity-)branching programs and span programs (see Section 3.3).

Note that strong average-case lower bounds against n2−o(1)-size general formulas and

deterministic branching programs were previously known [KR13, CKK+15] but they

did not match the worst-case lower bounds, whereas tight average-case lower bounds

for De Morgan formulas were proved by [KRT17].

8One exception is ACC circuits, for which satisfiability algorithms are known [Wil14b], and the
only exponential lower bound known for ACC is a consequence of this algorithm. However, the
function used in the lower bound is not in NP.

11

1.2.2 Algorithms for comparator circuits

We now describe the algorithms we can design based on our techniques for

proving lower bounds for comparator circuits.

#SAT algorithms. The design of algorithms for interesting circuit analysis prob-

lems is a growing line of research in circuit complexity [Wil14a]. These are problems

that take circuits as inputs. A famous example of such a circuit analysis problem

is the satisfiability problem (SAT), which asks to determine whether a given circuit

has a satisfying assignment. Note that the satisfiability problem for polynomial-size

general circuits is NP-complete, so it is not believed to have a polynomial-time (or

subexponential-time) algorithm. However, one can still ask whether we can ob-

tain non-trivial SAT algorithms running faster than exhaustive search, say in time

2n/nω(1) where n is the number of variables of the input circuit, even for restricted

circuit classes. While designing non-trivial SAT algorithms is an interesting prob-

lem by itself, it turns out that this task is also tightly connected to proving lower

bounds. In particular, recent works of Williams [Wil13, Wil14b] have shown that

such a non-trivial satisfiability algorithm for a given class of circuits can often be

used to prove non-trivial circuit lower bounds against that same circuit class.

Here, we show an algorithm with non-trivial running time that counts the

number of satisfying assignments of a given comparator circuit.

Theorem 1.2.2 (#SAT Algorithms). There is a constant d > 1 and a deterministic

algorithm such that, for every k ⩽ n/4, given a comparator circuit on n variables

with at most
n1.5

d · k ·
√

log n

gates, the algorithm outputs the number of satisfying assignments of C in time

2n−k · poly(n).

Note that the running time in Theorem 1.2.2 is non-trivial for size up to

o(n/ log n)1.5, in which case k = ω(log n) and the running time becomes 2n/nω(1).

Pseudorandom generators and MCSP lower bounds. Another important cir-

cuit analysis problem is derandomisation, which, roughly speaking, asks to decide

whether a given circuit accepts or rejects a large fraction of its inputs. A standard

approach to solve this problem is to construct a pseudorandom generator (PRG).

12

A PRG against a class C of circuits is an efficient and deterministic procedure G

mapping short binary strings (seeds) to longer binary strings, with the property

that G’s output (over uniformly random seeds) “looks random” to every circuit in

C. More precisely, we say that a generator G : {0, 1}r → {0, 1}n ε-fools a class C of

circuits if, for every C : {0, 1}n → {0, 1} from C, we have∣∣∣∣ P
z∈{0,1}r

[C(G(z)) = 1]− P
x∈{0,1}n

[C(x) = 1]

∣∣∣∣ ⩽ ε.

In constructing PRGs, we aim to minimize the parameter r, which is called the seed

length.

We show a PRG against comparator circuits of size s with seed length

s2/3+o(1).

Theorem 1.2.3 (Pseudorandom Generators). For every ε : N→ N and s : N→ N
such that ε(n) ⩾ 1/poly(n) and s(n) = nΩ(1), there exists a sequence (Gn)n∈N of

pseudorandom generators Gn : {0, 1}r → {0, 1}n, with seed length

r = s2/3+o(1),

that ε-fools comparator circuits on n variables with s(n) gates.

Note that the seed length of the PRG in Theorem 1.2.3 is non-trivial (i.e.,

o(n)) for comparator circuits of size n1.5−o(1), and only guaranteed to be smaller

than the output length for large enough n, since our bound on the seed length is

merely asymptotic9.

The PRG above has an application in obtaining lower bounds for the mini-

mum circuit size problem (MCSP) against comparator circuits. The MCSP problem

asks if a given truth table10 represents a function that can be computed by some

small-size circuit. Understanding the exact complexity of MCSP is a fundamental

problem in complexity theory. Motivated by a recent line of research called hardness

magnification [OS18, OPS19, CJW19, CHO+20], which states that a weak circuit

lower bound for certain variants of MCSP implies breakthrough results in circuit

complexity, researchers have been interested in showing lower bounds for MCSP

9The theorem states that, for every n ∈ N, there exists a generator G mapping r bits to n
bits for any choice of the parameters ε : N → N and s : N → N satisfying that s(n) = nΩ(1) and
ε(n) ⩾ n−k for some k ⩾ 1. The theorem thus guarantees that, for every n, the generator will
ε-fool comparator circuits with s gates. For concrete choices of ε and s (e.g., ε = 1/3 and s = n),
this is meaningful for every n ∈ N. However, the guarantee on the seed-length given here is only
asymptotic, which means that it is strictly smaller than the output n only for large enough n ∈ N.

10A truth table is a bit-string that stores the output values of a Boolean function for all possible
inputs.

13

against restricted classes of circuits. For many restricted circuit classes such as

constant-depth circuits, formulas and branching programs, the lower bounds that

have been proved for MCSP essentially match the best known lower bounds that we

have for any explicit functions [GII+19, CKLM20, KKL+20]. Here we obtain MCSP

lower bounds against comparator circuits that nearly match the worst-case lower

bounds.

Theorem 1.2.4 (MCSP Lower Bounds). Let MCSP[nα] denote the problem of de-

ciding whether a given n-bit truth table represents a function that can be computed

by some general circuit of size at most nα. For every large enough n ∈ N, any ε > 0

and any 0 < α ⩽ 1 − ε, the MCSP[nα] problem does not have comparator circuits

with n1+α/2−ε gates.

Previously, non-trivial comparator circuit lower bounds were known only for

functions satisfying Nečiporuk’s criterion [Nec66, GR20], such as Element Distinct-

ness and Indirect Storage Access. Theorem 1.2.4 provides yet another natural com-

putational problem which is hard for bounded-size comparator circuits. We remark

that the MCSP problem is expected to require much larger circuits than the lower

bound of Theorem 1.2.4 provides; however, the lack of combinatorial, algebraic or

analytic structure in the MCSP function means that proving lower bounds for it is

usually hard.

Finally, we also observe that the framework developed in [ST17] can be used

to obtain a non-trivial (distribution-independent) PAC learning algorithm for com-

parator circuits of size n1.5−o(1), that uses membership queries (see Section 3.6 of

Chapter 3).

1.3 Constant-depth circuits vs. monotone circuits

Chapter 4 turns our focus to monotone Boolean functions. A Boolean func-

tion f : {0, 1}n → {0, 1} is monotone if f(x) ⩽ f(y) whenever xi ⩽ yi for each

coordinate 1 ⩽ i ⩽ n. Monotone Boolean functions, and the monotone Boolean

circuits11 that compute them, have been extensively investigated for decades due to

their relevance in circuit complexity [Raz85a], cryptography [BL88], learning theory

[BT96], proof complexity [Kra97, Pud97], property testing [GGLR98], pseudoran-

domness [CZ16], optimisation [GJW18], hazard-free computations [IKL+19], and

meta-complexity [Hir22b], among other topics. In addition, over the last few years

11Recall that in a monotone Boolean circuit the gate set is limited to {AND,OR} and input gates
are labelled by elements from {x1, . . . , xn, 0, 1}.

14

a number of results have further highlighted the importance of monotone complex-

ity as a central topic in the study of propositional proofs, total search problems,

communication protocols, and related areas (see [dRGR22] for a recent survey).

Some of the most fundamental results about monotone functions deal with

their complexities with respect to different classes of Boolean circuits, such as the

monotone circuit lower bound of Razborov [Raz85b] for Matching and the constant-

depth circuit lower bound of Rossman [Ros08b] for k-Clique. Particularly important

to our discussion is a related strand of research that contrasts the computational

power of monotone circuits relative to general (non-monotone) AND/OR/NOT cir-

cuits, which we review next.

Weakness of Monotone Circuits. The study of monotone simulations of non-

monotone computations and associated separation results has a long and rich history.

In a sequence of celebrated results, [Raz85b, And85, AB87, Tar88] showed the ex-

istence of monotone functions that can be computed by circuits of polynomial size

but require monotone circuits of size 2n
Ω(1)

. In other words, the use of negations can

significantly speedup the computation of monotone functions. More recently, Göös,

Kamath, Robere and Sokolov [GKRS19] considerably strengthened this separation

by showing that some monotone functions in NC2 (poly-size O(log2 n)-depth fan-in

two circuits) require monotone circuits of size 2n
Ω(1)

. (An earlier weaker separation

against monotone depth nΩ(1) was established in [RW92].) Therefore, negations can

also allow monotone functions to be efficiently computed in parallel.

Similar separations about the limitations of monotone circuits are also known

at the low-complexity end of the spectrum: Okol’nishnikova [Oko82] and (inde-

pendently) Ajtai and Gurevich [AG87] exhibited monotone functions in AC0 (i.e.,

constant-depth poly-size AND/OR/NOT circuits) that require monotone AC0 cir-

cuits (composed of only AND/OR gates) of super-polynomial size.12 This result has

been extended to an exponential separation in [COS17], which shows the existence of

a monotone function in AC0 that requires monotone depth-d circuits of size 2Ω̃(n1/d)

even if MAJ (majority) gates are allowed in addition to AND/OR gates.13

Strength of Monotone Circuits. In contrast to these results, in many settings

negations do not offer a significant speedup and monotone computations can be un-

12We refer to [BST13] for an alternate exposition of this result.
13Separations between monotone and non-monotone devices have also been extensively investi-

gated in other settings. This includes average-case complexity [BHST14], different computational
models, such as span programs [BGW99, RPRC16] and algebraic complexity (see [CDM21] and
references therein), and separations in first-order logic [Sto95, Kup21, Kup22]. We restrict our
attention to worst-case separations for Boolean circuits in Chapter 4.

15

expectedly powerful. For instance, monotone circuits are able to efficiently imple-

ment several non-trivial algorithms, such as solving constraint satisfaction problems

using treewidth bounds (see, e.g., [Oli15, Chapter 3]). As another example, in the

context of cryptography, it has been proved that if one-way functions exist, then

there are monotone one-way functions [GI12]. Below we describe results that are

more closely related to the separations investigated in Chapter 4.

In the extremely constrained setting of depth-2 circuits, Quine [Qui53] showed

that monotone functions computed by size-s DNFs (resp., CNFs) can always be com-

puted by size-smonotone DNFs (resp., CNFs). Some results along this line are known

for larger circuit depth, but with respect to more structured classes of monotone

Boolean functions. Rossman [Ros08a, Ros17b] showed that any homomorphism-

preserving graph property computed by AC0 circuits is also computed by monotone

AC0 circuits.14 Under no circuit depth restriction, Berkowitz [Ber82] proved that

the monotone and non-monotone circuit size complexities of every slice function are

polynomially related.15

Despite much progress and sustained efforts, these two classes of results leave

open tantalising problems about the power of cancellations in computation.16 In

particular, they suggest the following basic question about the contrast between the

weakness of monotone computations and the strength of negations:

What is the largest computational gap between the power of monotone and

general (non-monotone) Boolean circuits?

A concrete formalisation of this question dates back to the seminal work

on monotone complexity of Grigni and Sipser [GS92] in the early nineties. They

asked if there are monotone functions in AC0 that require super-polynomial size

monotone Boolean circuits, i.e., if AC0∩Mono ⊈ mSIZE[poly]. In case this separation

holds, it would exhibit the largest qualitative gap between monotone and general

Boolean circuits, i.e., even extremely parallel non-monotone computations can be

more efficient than arbitrary monotone computations.

14A function f : {0, 1}(
n
2) → {0, 1} is called a graph property if f(G) = f(H) whenever G and H

are isomorphic graphs, and homomorphism-preserving if f(G) ⩽ f(H) whenever there is a graph
homomorphism from G to H. It is easy to see that every homomorphism-preserving graph property
is monotone.

15A function f : {0, 1}(
n
2) → {0, 1} is a slice function if there is i ⩾ 0 such that f(x) is 0 on

inputs of Hamming weight less than i and 1 on inputs of Hamming weight larger than i.
16Any non-monotone circuit can be written as an XOR (parity) of distinct monotone sub-circuits

(see, e.g., [GMOR15, Appendix A.1]), so negations can be seen as a way of combining, or cancelling,
different monotone computations. See also a related discussion in Valiant [Val80].

16

Results and preliminaries. Our results show that, with respect to the compu-

tation of monotone functions, highly parallel (non-monotone) Boolean circuits can

be super-polynomially more efficient than unrestricted monotone circuits. Before

providing a precise formulation of these results, we introduce some notation.

For a function d : N → N, let mDEPTH[d] denote the class of Boolean

functions computed by monotone fan-in two AND/OR Boolean circuits of depth

O(d(n)). Similarly, we use mSIZE[s] to denote the class of Boolean functions com-

puted by monotone circuits of size O(s(n)). More generally, for a circuit class C,
we let mC denote its natural monotone analogue. Finally, for a Boolean function

f : {0, 1}n → {0, 1}, we use mSIZE(f) and mDEPTH(f) to denote its monotone

circuit size and depth complexities, respectively. We refer to Jukna [Juk12] for

standard background on circuit complexity theory.

1.3.1 Constant-depth circuits vs. monotone circuits

Recall that the Okol’nishnikova-Ajtai-Gurevich [Oko82, AG87] theorem states

that AC0 ∩Mono ⊈ mAC0. In contrast, as our main result, we establish a separa-

tion between constant-depth Boolean circuits and monotone circuits of much larger

depth. In particular, we show that constant-depth circuits with negations can be

significantly more efficient than monotone formulas.

Theorem 1.3.1 (Polynomial-size constant-depth vs. larger monotone depth). For

every k ⩾ 1, we have AC0 ∩Mono ̸⊆ mDEPTH[(log n)k]. Moreover, this separation

holds for a monotone graph property.

In a more constrained setting, Kuperberg [Kup21, Kup22] exhibited a mono-

tone graph property expressible in first-order logic that cannot be expressed in

positive first-order logic. A separation that holds for a monotone graph property

was unknown even in the context of AC0 versus mAC0.

Let HomPreserving denote the class of all homomorphism-preserving graph

properties, and recall that Rossman [Ros08a, Ros17b] proved AC0∩HomPreserving ⊆
mAC0. Theorem 1.3.1 implies that this efficient monotone simulation does not ex-

tend to the larger class of monotone graph properties, even if super-logarithmic

depth is allowed.

Our argument is completely different from those of [Oko82, AG87, BST13,

COS17] and their counterparts in first-order logic [Sto95, Kup21, Kup22]. In partic-

ular, it allows us to break the O(log n) monotone depth barrier present in previous

separations with an AC0 upper bound, which rely on lower bounds against mono-

tone circuits of depth d and size (at most) 2n
O(1/d)

. We defer the discussion of our

17

techniques to Section 2.2 in Chapter 4.

In our next result, we consider monotone circuits of unbounded depth.

Theorem 1.3.2 (Polynomial-size constant-depth vs. larger monotone size). For

every k ⩾ 1, we have AC0[⊕] ∩Mono ̸⊆ mSIZE[2(logn)
k
].

AC0

AC0[⊕]

NC2

P mSIZE[2(log n)
k
]

mDEPTH[(log n)k]

mSIZE[2n
ε
]

mAC0

Non-monotone models

[AG87, COS17]

Thm. 1.3.2

Thm. 1.3.1

?

Monotone models

[GKRS19]

[Tar88]

Figure 1.4: Illustration of the results of Chapter 4. The lines from left to right represent
a result showing that there exists a monotone Boolean function in the left circuit class
which is not computed by the monotone circuit class in the right. The green lines represent
known results. The purple lines represent our results. The dashed magenta line represents
a strengthening of the open question of Grigni and Sipser [GS92], corresponding to a lower
bound like that of our Theorem 1.3.2, but with an upper bound like that of our Theo-
rem 1.3.1. To make the figure simpler, we didn’t draw other lines that could have been
drawn, such as a green line from NC2 to quasipolynomial monotone size ([Raz85b]), or a
green line from NC2 to monotone nΩ(1)-depth ([RW92]).

Theorem 1.3.1 and Theorem 1.3.2 are incomparable: while the monotone

lower bound is stronger in the latter, its constant-depth upper bound requires parity

gates. Theorem 1.3.2 provides the first separation between constant-depth circuits

and monotone circuits of polynomial size, coming remarkably close to a solution to

the question considered by Grigni and Sipser [GS92]. Indeed, for k = 2, our lower

18

bound is nΩ(logn), which is superpolynomial as Grigni and Sipser asked for, whereas

the upper bound is a constant-depth circuit with ⊕-gates.

We note that in both of our results the family of monotone functions is

explicit and has a simple description (see the technical overview in Section 2.2).

1.3.2 Non-trivial monotone simulations and their consequences

While Theorem 1.3.1 and Theorem 1.3.2 provide more evidence for the ex-

istence of monotone functions in AC0 which require monotone circuits of super-

polynomial size, they still leave open the intriguing possibility that unbounded fan-in

⊕-gates might be crucial to achieve the utmost cancellations (speedups) provided by

constant-depth circuits. This further motivates the investigation of efficient mono-

tone simulations of constant-depth circuits without parity gates, which we consider

next.

For convenience, let AC0
d[s] denote the class of Boolean functions computed

by AC0 circuits of depth ⩽ d and size ⩽ s(n). (We might omit s(n) and/or d when

implicitly quantifying over all families of polynomial size circuits and/or all constant

depths.)

We observe that a non-trivial monotone simulation is possible in the ab-

sence of parity gates. Indeed, by combining existing results from circuit complexity

theory, it is not hard to show that AC0
d[s] ∩Mono ⊆ mSIZE[2n(1−1/O(log s)d−1)] (see

Section 4.3.1). Moreover, this upper bound is achieved by monotone DNFs of the

same size. This is the best upper bound we can currently show for the class of all

monotone functions when the depth d satisfies d ⩾ 3. (Negations offer no speedup

at depths d ⩽ 2 [Qui53].) In contrast, we prove that a significantly faster monotone

simulation would lead to new (non-monotone) lower bounds in complexity theory.

Recall that it is a notorious open problem to obtain explicit lower bounds against

depth-d circuits of size 2ω(n
1/(d−1)), for any fixed d ⩾ 3. We denote by GraphProperties

the set of all Boolean functions which are graph properties.

Theorem 1.3.3 (New circuit lower bounds from monotone simulations). There

exists ε > 0 such that the following holds.

1. If AC0
3 ∩Mono ⊆ mNC1, then NP ̸⊆ AC0

3[2
o(n)].

2. If AC0
4 ∩Mono ⊆ mSIZE[poly], then NP ̸⊆ AC0

4[2
o(
√
n/ logn)].

3. If AC0 ∩Mono ⊆ mSIZE[poly], then NC2 ̸⊆ NC1.

4. If NC1 ∩Mono ⊆ mSIZE[2O(nε)], then NC2 ̸⊆ NC1.

19

5. If AC0 ∩Mono ∩ GraphProperties ⊆ mSIZE[poly], then NP ̸⊆ NC1.

6. If NC1 ∩Mono ∩ GraphProperties ⊆ mSIZE[poly], then L ̸⊆ NC1.

Item (3) of Theorem 1.3.3 implies in particular that, if the upper bound of

Theorem 1.3.2 cannot be improved to AC0 (i.e., the question asked by [GS92] has

a negative answer), then NC2 ̸⊆ NC1. It also improves a result from [CHO+20]

showing the weaker conclusion NP ⊈ NC1 under the same assumption.

Even if it’s impossible to efficiently simulate AC0 circuits computing mono-

tone functions using unbounded depth monotone circuits, it could still be the case

that a simulation exists for certain classes of monotone functions with additional

structure. As explained above, Rossman’s result [Ros08a, Ros17b] achieves this for

graph properties that are preserved under homomorphisms. Items (5) and (6) of

Theorem 1.3.3 show that a simulation that holds for all monotone graph properties

is sufficient to get new separations in computational complexity.

1.3.3 Monotone complexity of constraint satisfaction problems

Recall that [GKRS19] showed the existence of a monotone function fGKRS in

NC2 that is not in mSIZE[2n
Ω(1)

]. As opposed to classical results [Raz85b, And85,

AB87, Tar88] that rely on the approximation method, their monotone circuit lower

bound employs a lifting technique from communication complexity. It is thus natural

to consider if their approach can be adapted to provide a monotone function g that

is efficiently computable by constant-depth circuits but is not in mSIZE[poly].

As remarked in [GKRS19, dRGR22], most17 monotone lower bounds ob-

tained from lifting theorems so far also hold for monotone encodings of constraint

satisfaction problems (CSPs). Next, we introduce a class of monotone Boolean func-

tions CSP-SATS which capture the framework and lower bound of [GKRS19].

Encoding CSPs as monotone Boolean functions. Let R ⊆ {0, 1}k be a rela-

tion. We call k the arity of R. Let V = (i1, . . . , ik) ∈ [n]k, and let fR,V : {0, 1}n →
{0, 1} be the function that accepts a string x ∈ {0, 1}n if (xi1 , . . . , xik) ∈ R. We

call fR,V a constraint application of R on n variables. (A different choice of the se-

quence V gives a different constraint application of R.) If S is a finite set of Boolean

relations, we call any set of constraint applications of relations from S on a fixed

set of variables an S-formula. In particular, we can describe an S-formula through

a set of pairs (V,R). We say that an S-formula F is satisfiable if there exists an

assignment to the variables of F which satisfies all the constraints of F .

17For a more careful discussion of this, see Section 4.4.5 in Chapter 4.

20

Let S = {R1, . . . , Rk} be a finite set of Boolean relations. Let ℓi be the arity

of the relation Ri. Note that there are nℓi possible constraint applications of the

relation Ri on n variables. Let N :=
∑k

i=1 n
ℓi . We can identify each S-formula F on

a fixed set of n variables with a corresponding string wF ∈ {0, 1}N , where wFj = 1

if and only if the j-th possible constraint application (corresponding to one of the

N pairs (V,R)) appears in F . Let CSP-SATnS : {0, 1}N → {0, 1} be the Boolean

function which accepts a given S-formula F if F is unsatisfiable. Note that this is a

monotone function. When n is clear from the context or we view {CSP-SATnS}n⩾1

as a sequence of functions, we simply write CSP-SATS .

The function fGKRS from [GKRS19] is simply CSP-SATS for S = {⊕0
3,⊕1

3},
where ⊕b3(x1, x2, x3) = 1 if and only if

∑
i xi = b (mod 2). More generally, for any

finite set S of Boolean relations, their framework shows how to lift a Resolution

width (resp. depth) lower bound for an arbitrary unsatisfiable S-formula F over m

variables into a corresponding monotone circuit size (resp. depth) lower bound for

CSP-SATnS , where n = poly(m).

Despite the generality of the technique from [GKRS19] and the vast number

of possibilities for S, we prove that a direct application of their approach cannot

establish Theorem 1.3.1 and Theorem 1.3.2. This is formalised as follows. (We refer

to Section 4.4 for much stronger forms of the result.)

Theorem 1.3.4 (Limits of the direct approach via lifting and CSPs). Let S be a

finite set of Boolean relations. The following holds.

1. If CSP-SATS /∈ mSIZE[poly] then CSP-SATS is ⊕L-hard under ⩽AC0

m reductions.

2. If CSP-SATS /∈ mNC1 then CSP-SATS is L-hard under ⩽AC0

m reductions.

In particular, since there are functions (e.g., Majority) computable in log-

arithmic space that are not in AC0[⊕], Theorem 1.3.4 (Part 2) implies that any

CSP-SATS function that is hard for poly-size monotone formulas (mNC1) must lie

outside AC0[⊕]. Observe that this can also be interpreted as a monotone sim-

ulation: for any finite set S of Boolean relations, if CSP-SATS ∈ AC0[⊕] then

CSP-SATS ∈ mNC1.18

Theorem 1.3.4 is a corollary of a general result that completely classifies

the monotone circuit complexity of Boolean-valued constraint satisfaction problems

18Jumping ahead, our proof of Theorem 1.3.2 still relies in a crucial way on the monotone lower
bound obtained by [GKRS19]. However, our argument requires an extra ingredient and does not
follow from a direct application of their template. We provide more details about it in our technical
overview in Section 2.2. Interestingly, the proof of Theorem 1.3.1 was discovered by trying to avoid
the “barrier” posed by Theorem 1.3.4.

21

based on the set Pol(S) of polymorphisms of S, a standard concept in the investi-

gation of CSPs.19 We present next a simplified version of this result, which shows

a dichotomy for the monotone circuit size and depth of Boolean-valued constraint

satisfaction problems. We refer to Section 4.4 for a more general formulation and

additional consequences.

Theorem 1.3.5 (Dichotomies for the monotone complexity of Boolean-valued CSPs).

Let S be a finite set of Boolean relations. The following holds.

1. Monotone Size Dichotomy: If Pol(S) ⊆ L3, then there exists ε > 0 such that

mSIZE(CSP-SATS) = 2Ω(nε). Otherwise, mSIZE(CSP-SATS) = nO(1).

2. Monotone Depth Dichotomy: If Pol(S) ⊆ L3 or Pol(S) ⊆ V2 or Pol(S) ⊆
E2, there is ε > 0 such that mDEPTH(CSP-SATS) = Ω(nε). Otherwise,

CSP-SATS ∈ mNC2.

We note that previous papers of Schaefer [Sch78] and Allender, Bauland,

Immerman, Schnoor and Vollmer [ABI+09] provided a conditional classification of

the complexity of such CSPs. Theorem 1.3.5 and its extensions, which build on

their results and techniques, paint a complete and unconditional picture of their

monotone complexity.20

1.4 The computational hardness of quantum one-wayness

In Chapter 5, we switch from restricted circuit models to a more powerful

computational device – that of quantum algorithms – which we will study from the

perspective of cryptography.

The vast majority of useful classical cryptographic primitives share the fol-

lowing property: they can be used to build one-way functions21 in a black-box

manner. In this sense, one-way functions can be thought of as a “minimal” cryp-

tographic primitive. However, any one-way function can be broken by an efficient

algorithm with access to an NP oracle. This means that if P = NP, then one-way

functions do not exist. As it is unknown whether P = NP or not, the existence of

19Roughly speaking, Pol(S) captures the amount of symmetry in S, and a larger set Pol(S)
implies that solving CSP-SATS is computationally easier. We refer the reader to Section 4.4 for
more details and for a discussion of Post’s lattice, which is relevant in the next statement.

20We remark that only recently has Schaefer’s classification been extended to the non-Boolean
case [Zhu17, Bul17]. Though the refined classification of [ABI+09] is conjectured to hold analogously
in the case of non-Boolean CSPs [LT09], this is still open (see the discussion in [Bul18, Section 7]).

21A one-way function is a function on bit-strings which can be efficiently evaluated but is hard
to invert.

22

one-way functions, and thus all of classical cryptography, must rely on computa-

tional assumptions.

This issue led to the natural desire to “map out” the world of classical cryp-

tography. Over many years, cryptographers have done a fairly good job of figuring

out which cryptographic primitives can be built from each other. This cartogra-

phy helps give a sense of the relative strength of assuming the existence of different

cryptographic primitives.

As an example, it is known how to construct one-way functions from any key

exchange protocol, i.e. a protocol where two parties can agree on a secret using only

communication over a public channel [BCG89]. However, there is strong evidence

that building a key exchange protocol from a one-way function is difficult [IR89].

The primitives which can be built from one-way function form a crypto-complexity

class known as “MiniCrypt” [Imp95]. Two cryptographic primitives in this class of

particular note are pseudorandom generators and commitment schemes. A pseudo-

random generator is a deterministic function which maps a small amount of ran-

domness to a longer string indistinguishable from random. A commitment scheme

is a process by which a party can encode some string into a “commitment”, such

that later the party can prove this “commitment” was an encoding of the original

string.

In recent years, cryptographers have started to consider what happens if we

allow cryptographic primitives to have quantum output. Here, the landscape of

relations between primitives looks very different. Of particular note, it was shown

that quantum key distribution, a quantum variant of key exchange, exists uncondi-

tionally [BB14, Wie83]. On the other hand, it is known that the quantum versions

of one-way functions, pseudorandom generators, and commitments cannot be secure

against information-theoretic attackers, and thus require some computational hard-

ness in order to exist [LC97, JLS18, KT23]. These variants are known as one-way

state generators, pseudorandom state generators, and quantum bit commitments

respectively.

However, it is still unclear what this hardness looks like from a complex-

ity perspective. In particular, it is known there exists an oracle relative to which

BQP ⊇ NP, but all three of these primitives exist22 [Kre21]. Furthermore, we are

still mapping out the relations between quantum primitives. It was only recently

discovered that quantum bit commitments can be built from one-way state gener-

ators [KT23], and it is still an open question as to whether pseudorandom state

22For one-way state generators and quantum bit commitments, the result follows from [Kre21]
and the subsequent works of [MY22b, KT23].

23

generators can be built from quantum bit commitments.

The main goal of Chapter 5 is to broaden our understanding of the hardness

of quantum primitives, with a particular focus on one-way state generators. In

particular, we show two main results:

1. One-way state generators can be built from pseudorandom states for nearly

all parameter regimes requiring computational hardness.

2. If one-way state generators exist, then BQP ̸= PP.

These main results bring along a number of interesting implications. The

following are of particular note:

1. A fixed-copy version of one-way state generators exists unconditionally.

2. If we can show that quantum bit commitments exist relative to a PP oracle,

then there is a black-box separation showing it is unlikely that we will be able

to build one-way state generators from quantum bit commitments.

Preliminaries. We now recall a few key concepts from quantum cryptography

before we give more details about the results we show.

Pseudorandom State Generators (PRS). A pseudorandom state generator, origi-

nally defined in [JLS18], is a quantum variant of a pseudorandom generator. Given

a classical key k, a PRS is a quantum circuit mapping k to a quantum pure state

|ϕk⟩. The security guarantee is that the output of a PRS on a random input should

look like a random state. That is, it is hard for any quantum adversary to distin-

guish any polynomial number of copies of a random |ϕk⟩ from polynomial copies of

a Haar random state.

The relationship between the length of the input key n and the number of

output qubits m determines whether a PRS can exist information-theoretically or

requires computational assumptions. In particular, [AGQY22] shows that PRSs

with output state length m ⩾ log n qubits can be broken by an inefficient adversary,

and thus must be a computational object. On the other hand, it is known that PRSs

with state length m ⩽ c log n exist unconditionally for some c ∈ (0, 1) [AGQY22,

BS20].

One Way State Generators (OWSG). A one-way state generator, originally defined

in [MY22a], is a quantum variant of a one-way function. Just like PRSs, a OWSG

maps a classical key k to a quantum state |ϕk⟩. The security guarantee of a OWSG

24

is that, given any polynomial number of copies of |ϕk⟩, it is hard for a quantum

algorithm to find keys k′ such that |ϕk⟩ , |ϕk′⟩ have noticeable overlap. OWSGs can

also be defined to have mixed state outputs [MY22b], although we will not consider

this variant in this thesis.

1.4.1 Building one-way state generators from pseudorandom states

It is known that any expanding PRS is also a OWSG [MY22a]. Here, an

expanding PRS is one which has keys of length n and output states of length m >

(1 + c)n for some c > 0. We extend this proof to show that any PRS with output

length at least m ⩾ log n+ 1 implies OWSGs. Since OWSGs require computational

hardness [KT23, LC97], and there exists d < 1 such that PRSs with output length

⩽ d log n exist unconditionally [BCQ22], this reduction is close to optimal.

Theorem 1.4.1 (Informal version of Theorem 5.2.3). For every c ⩾ 1, if there

exists a PRS mapping n-bit strings to (log n+ c)-qubit states, then OWSGs exist.

Through a closely related argument, we also find that PRSs that map n bits

to ω(log n) qubits are OWSGs.

Theorem 1.4.2 (Informal version of Theorem 5.2.4). Any PRS that maps n-bit

strings to ω(log n)-qubit states is also a OWSG.

1.4.2 Fixed-copy one-way state generators

Both PRSs and OWSGs are defined to be secure against adversaries that

are given any polynomial number of copies of the output state. However, we could

instead consider an alternative definition where we fix the number of copies given

to the adversary. We will refer to these primitives by the names t-copy PRS and t-

copy OWSG. Related primitives have already been considered in a number of works,

including [GC01, KT23, LMW23]. A summary of prior work and our results can be

found in Table 1.1.

It is known that for any fixed function t, expanding t(λ)-copy PRSs require

computational hardness because they can be used to construct quantum bit com-

mitments [LMW23, Yan22, MY22a, BCQ22], where λ is the security parameter.

Therefore, any expanding t(λ)-copy PRS can be broken by an inefficient attacker.

On the other hand, if we do not have an expansion requirement, it can be shown

that something called an efficient approximate t-design (defined formally in Sec-

tion 5.1.5) is also a t-copy PRS [Kre21]. Since efficient approximate t-designs exist

unconditionally [DCEL09, HMMH+23, OSP23], so do t-copy (non-expanding) PRSs.

25

Thus, one may ask the question: for what parameters do t-copy OWSGs

require computational assumptions? In a recent work, Khurana and Tomer [KT23]

show that Wiesner encodings / BB84 states [Wie83, BB14] are 1-copy OWSGs.

Additionally, written twenty years before OWSGs were defined, [GC01] shows that

t-qubit stabiliser states are t/2-copy OWSGs. The OWSG construction of [GC01]

only has a weaker security guarantee, but this can be resolved by amplification.

Note that this means that for any fixed polynomial t, t(λ)-copy OWSGs

exist unconditionally, where λ is the security parameter. However, [KT23] shows

that quantum bit commitments can be built from Θ(n)-copy OWSGs, where n is

the input key length. This is not a contradiction, since the number of copies of

security here depends on the input length instead of the security parameter. Thus,

we may consider the following refinement of our question:

For what functions t(·) do t(n)-copy OWSGs require computational as-

sumptions?

Our proof of Theorem 1.4.2 will also imply the following result.

Corollary 1.4.3 (Informal version of Corollary 5.2.6). Every efficient approximate

t-design mapping n bits to ω(log n) qubits is also a (t− 1)-copy OWSG.

26

Primitive Copies Security Comments

Expanding PRS t ⩾ 1 copy Computational [MY22a, Yan22, BCQ22]
PRS poly(λ)-copy Statistical Approximate t-designs

OWSG poly(λ)-copy Statistical Theorem 1.4.2 with approximate t-designs

PRS O(n/ log n)-copy Statistical Approximate t-designs
OWSG O(

√
n)-copy Statistical Stabiliser states [GC01]

OWSG Ω(n)-copy Computational Implies quantum bit commitments [KT23]
OWSG o(n/ log n)-copy Statistical Corollary 1.4.4

Table 1.1: A summary of what is known about the computational and information-theoretic nature of
quantum cryptographic primitives, based on the number of copies of the output given to the adversary.
We say that security is computational if the existence of the primitive requires computational hardness,
and we say that the security is statistical if the primitive can be shown to exist unconditionally against
statistical adversaries (in other words, no algorithm, even an inefficient one, is capable of breaking the
primitive). The rows above the dashed line correspond to constructions where the number of copies is in
terms of the security parameter λ. The rows below the dashed line correspond to constructions where the
number of copies is in terms of n, the number of input bits.

27

If we consider state-of-the-art constructions of approximate t-designs [OSP23],

we in addition prove the following.

Corollary 1.4.4 (Equivalent to Corollary 5.2.7). For every t(n) = o(n/ log n), there

exists a t(n)-copy OWSG.

Aside from demonstrating an interesting new property of approximate t-

designs, these results give an interesting dichotomy: OWSGs require computational

hardness for Ω(n)-copies, and exist unconditionally for o(n/ log n) copies.

1.4.3 A quantum lower bound for PP from a cryptographic assump-

tion

It is known from [Kre21, AGQY22] that the existence of a PRS which outputs

a (log n+ O(1))-qubit state implies that BQP ̸= PP, where BQP refers to the class

of problems efficiently solvable by quantum computers, and PP refers to the class

of problems such that a probabilistic Turing machine gets the correct answer with

probability strictly greater than 1
2 . The complexity classes BQP and PP satisfy

BQP ⊆ PP [ADH97] (see Figure 1.1), and it is not yet known whether they are

equal or not. Thus, like with one-way functions, the existence of PRSs would bring

new implications in complexity theory.

However, no similar results are known about OWSGs or quantum bit com-

mitments. In fact, it is conjectured by [LMW23] that quantum bit commitments

may exist relative to a random oracle and any classical oracle, even ones that de-

pend on the random oracle. Khurana and Tomer [KT23] observe that there exists

a classical oracle that breaks OWSGs, which implies that such a conjecture cannot

extend to the existence of OWSGs. If the conjecture of [LMW23] is proven, this

would provide a black box separation between OWSGs and quantum bit commit-

ments. However, it is not immediately clear that the oracle [KT23] mentions lies

inside any interesting complexity class. Furthermore, the question about whether a

PP oracle can break OWSGs was asked in [MY22a].

We show that the existence of OWSGs indeed does have interesting complex-

ity implications. In particular, we show the following.

Theorem 1.4.5 (Informal version of Corollary 5.3.5). If OWSGs exist, then BQP ̸=
PP.

It then follows that a black box separation between quantum bit commit-

ments and OWSGs can be achieved by proving a weaker version of the conjecture

of [LMW23], namely that there exists an oracle O relative to which quantum bit

commitments exist and PPO ⊆ BQPO.

28

1.4.4 Concurrent and further work

We remark that a concurrent revision of [MY22a] provides a different proof

of Theorem 1.4.1. In particular, in their Appendix C they show that, given a PRS

G : k 7→ |ϕk⟩ mapping n bits to m ⩾ log n qubits, the mapping k 7→ |ϕk⟩⊗n is

a OWSG. Note, however, that these techniques do not easily extend to imply our

other results. In particular, our results show how to build compressing OWSGs (as

in Theorem 1.4.2) and thus also give better parameters for unconditional t-copy

OWSGs (as in Corollary 1.4.3).

After our results were announced, Hhan, Morimae and Yamakawa [HMY23]

proved that there does not exist OWSGs with O(log n)-output qubits. This shows

that our proof that PRSs with ω(log n)-output qubits are OWSGs (Theorem 1.4.2) is

optimal under the cryptographic assumption that (post-quantum) one-way functions

exist, since one-way functions imply PRSs of arbitary output length [BS20].

29

30

Chapter 2

Technical overview

This chapter will give an overview of the technical ingredients and insights

that are employed in the following chapters (Chapters 3 to 5).

First, a few more general introductory remarks. Chapter 3 applies the tech-

nique of random restrictions, first considered by Subbotovskaya [Sub61] and now

widely applied in circuit complexity. Random restrictions have been very fruitful in

the study of weaker circuit classes, such as AC0 circuits [H̊as86, IMP12], De Mor-

gan formulas [KR13] and branching programs [IMZ19], both for the proof of lower

bounds and the construction of algorithms [CKK+15]. However, as observed by

Gál and Robere [GR20], there are technical challenges when trying to apply this

approach to comparator circuits. In Chapter 3, we successfully apply the method

of random restrictions to comparator circuits for the first time.

In Chapter 4, instead of applying direct combinatorial methods to analyse a

circuit model as in the previous chapter, our arguments will combine in novel ways

several previously unrelated ideas from the literature, such as monotone circuit lower

bounds, depth-reduction techniques, and the algebraic framework of polymorphisms,

standard in the study of CSPs [BCRV03, BCRV04]. The latter will be employed to

design reductions between different monotone problems.

In our final technical chapter (Chapter 5), we will closely study and ap-

ply the concentration of Haar states phenomenom, together with state-of-art t-

designs [OSP23], in order to obtain nearly optimal reductions from PRSs to OWGSs,

and constructions of unconditional fixed-copy OWSGs. Moreover, we will construct

a language in PP with which we can, in polynomial time, estimate the conditional

probability of a sampler. Using a recent reduction from one-way state generators

to one-way puzzles [KT23], this will be enough to break OWSGs. We view our

strategy as inspired by Kretschmer’s [Kre21] idea for breaking pseudorandom state

31

generators with a PP oracle, together with a search-to-decision reduction for PP.

Contrapositively, this means that the existence of OWSGs imply a (uniform) quan-

tum lower bound for PP.

2.1 Shrinkage for comparator circuits

We will first describe how the method of random restrictions is applied to

obtain an optimal average-case lower bound for comparator circuits. The algorithms

will then build on the insights obtained in the proof of the lower bound.

Average-case lower bounds. At a high level, the proof of our average-case lower

bound is based on the approach developed in [KR13, CKK+15], which can be used

to obtain average-case-lower bounds against circuits that admit a property called

“shrinkage with high probability under random restrictions”. Roughly speaking,

this property says that, if we randomly fix the values of some variables in the

circuit except for a 0 < p < 1 fraction of them, then its size shrinks by a factor

of pΓ for some Γ > 0, with very high probability. This method has been used to

obtain strong average-case lower bounds against n2.5−o(1)-size De Morgan formulas

[KR13, CKK+15] (later improved to n3−o(1) by [KRT17]) and n2−o(1)-size general

formulas and deterministic branching programs.

An obvious issue of applying this approach to comparator circuits is that we

don’t know how to shrink the size (i.e., number of gates) of a comparator circuit

using random restrictions, as when we fix the value of a (non-trivial1) wire, we may

only be able to remove one gate in the worst scenario (i.e., the gate that is directly

connected to that wire). The idea is that instead of shrinking the number of gates,

we will try to shrink the number of wires. The reason why this can be useful is

that one can effectively bound the number of gates of a comparator circuit by its

number of wires; this is a structural result of comparator circuits proved by Gál and

Robere [GR20] and was the key ingredient in proving their worst-case lower bound.

More precisely, they showed that any comparator circuit that has at most ℓ wires

needs no more than ℓ2 gates (see Lemma 3.1.4). Now following [KR13, CKK+15],

one can show that under some certain type of random restriction that leaves a

p := k/n fraction of the variables unfixed, for any large enough k, the number of

wires of a comparator circuit will shrink (with very high probability) by roughly

a factor of p, and hence its number of gates is bounded by (p · ℓ)2. By letting

ℓ = o
(
n1.5/

(
k ·
√

log n
))

, this size is less than o(n/ log n) and from there one can

show that the original circuit cannot compute some hard function on more than

1We say that a wire is non-trivial if it is connected to some gate.

32

1/2 + 1/2k
Ω(1)

fraction of the inputs.

While the above gives an average-case lower bound, it does not match the

worst-case one, because we need to set k ⩾ logc n for some (unspecified) constant

c > 1, which is controlled by the type of random restrictions and the extractor used

in the construction of the hard function in both [KR13, CKK+15]. This means

we can only achieve a lower bound that is at best n1.5/(log n)c+.5 (even for worst-

case hardness). In order to be able to set k = O(log n), one way is to use a more

sophisticated (so called non-explicit bit-fixing) extractor shown in [KRT17], which

will allow us to set k ∈
[
O(log n) ,Ω

(
n1/3

)]
(with hardness 1/2 + 1/2Ω(k)). Here

we refine and simplify this approach in the case of comparator circuits by using a

more structural (block-wise) random restriction that shrinks the number of wires

with probability one. Such a random restriction, when combined with a simple

extractor, allows us to set k ∈ [O(log n) ,Ω(n)].

#SAT algorithms. Based on the above analysis in showing average-case lower

bounds, one can try to design a SAT algorithm for comparator circuits in a way

that is similar to that of [CKK+15], which combines “shrinkage under restrictions”

with a memorisation technique. Suppose we have a comparator circuit C with

s := o
(
n1.5/(k ·

√
log n)

)
gates and and ℓ ⩽ s non-trivial wires. By partitioning

the variables into n/k equal-size blocks, we can show that there is some block Si

such that after fixing the variables outside of this block, the number of wires in the

restricted circuit is at most ℓ0 := ℓ/(n/k) ⩽ o
(√

n/ log n
)

. Again by the structural

property of comparator circuits (Lemma 3.1.4), this restricted circuit, which is on k

variables, has an equivalent circuit with o(n/ log n) gates. Then to count the number

of satisfying assignments for the original circuit, we can first memorise the numbers

of satisfying assignments for all circuits with at most with o(n/ log n) gates. There

are 2o(n) of them and hence we can compute in time 2k · 2o(n) a table that stores

those numbers. We then enumerate all possible 2n−k restrictions ρ ∈ {0, 1}[n]\Si and

for each ρ we look up the number of satisfying assignments of the restricted circuit

C↾ρ from the pre-computed table. Summing these numbers over all the ρ’s gives the

number of satisfying assignments of C.

However, there is a subtle issue in the above argument: although we know

that a restricted circuit has an equivalent simple circuit with o(n/ log n) gates, we

do not know which simple circuit it is equal to. Note that when we fix the value of a

(non-trivial) wire, we may only be able to remove one gate, so the number of gates

left in the restricted circuit is possibly s− (ℓ− ℓ0), which can be much larger than

n/ log n, and it is not clear how we can further simplify such a circuit efficiently. To

overcome this issue, we explore structural properties of comparator circuits to show

33

how to construct a more sophisticated data structure that not only can tell us the

number of satisfying assignments of a circuit with o(n/ log n) gates but also allows

us to efficiently simplify each restricted circuit to an equivalent circuit with at most

this many gates.

Pseudorandom generators and MCSP lower bounds. Our PRG against com-

parator circuits builds upon the paradigm of [IMZ19], which was used to construct

PRGs against circuits that admit “shrinkage under pseudorandom restrictions”. As

in the proof of our average-case-lower bound, in order to apply this paradigm, we

will shrink the number of wires instead of the number of gates. Following [IMZ19],

we prove a pseudorandom shrinkage lemma for comparator circuits, which can then

be used to obtain a PRG of seed length s2/3+o(1), where s is the size of a comparator

circuit.

As observed in [CKLM20], one can modify the construction of the PRG in

[IMZ19] to make it “locally explicit”. This means that, for every seed, the output

of the PRG, when viewed as a truth table of a function, has circuit complexity that

is about the same as the seed length. Such a “local” PRG immediately implies that

MCSP cannot be computed by comparator circuits of size n1.5−o(1), when the size

parameter of MCSP is nearly-maximum (i.e., n/O(log n)) 2. Furthermore, we show

a better trade-off between the size parameters of MCSP and the lower bound size of

the comparator circuits, as in Theorem 1.2.4. This is similar to what was done by

[CJW20] in the case of MCSP lower bounds against De Morgan formulas.

2.2 Constant-depth circuits vs. monotone circuits

The exposition below follows the order in which the results appear above,

except for the overview of the proof of Theorem 1.3.1, which appears last. We

discuss this result after explaining the proof of Theorem 1.3.2 and the classification

of the monotone complexity of CSPs (Theorem 1.3.4 and Theorem 1.3.5), as this

sheds light into how the proof of Theorem 1.3.1 was discovered and into the nature

of the argument.

A monotone circuit size lower bound for a function in AC0[⊕]. We first

give an overview of the proof of Theorem 1.3.2.

2Note that MCSP takes two input parameters: a truth table and a size parameter θ, and asks
whether the given truth table has circuit complexity at most θ.

34

The lower bound of [GKRS19]. We begin by providing more details about the

monotone circuit lower bound of [GKRS19], since their result is a key ingredient

in our separation (see [dRGR22] for a more detailed overview). Recall that their

function fGKRS corresponds to CSP-SATS for S = {⊕0
3,⊕1

3}. Following their no-

tation, this is simply the Boolean function 3-XOR-SATn : {0, 1}2n
3

→ {0, 1} which

uses each input bit to indicate the presence of a linear equation with exactly 3

variables. This (monotone) function accepts a given linear system over F2 if the

system is unsatisfiable. As one of their main results, [GKRS19] employed a lifting

technique from communication complexity to show the existence of a constant ε > 0

such that mSIZE(3-XOR-SATn) = 2n
ε
. (We show in Appendix B.1 that a weaker

super-polynomial monotone circuit size lower bound for 3-XOR-SATn can also be

obtained using the approximation method and a reduction.)

Sketch of the proof of Theorem 1.3.2. Since 3-XOR-SATn ∈ NC2 (see, e.g, [GKRS19]),

their result implies that NC2 ∩Mono ⊈ mSIZE[2n
Ω(1)

]. On the other hand, we are

after a separation between constant-depth (non-monotone) circuits and polynomial-

size (unbounded depth) monotone circuits. There are two natural ways that one

might try to approach this challenge, as discussed next.

First, the lifting framework explored by [GKRS19] offers in principle the

possibility that by carefully picking a different set S of Boolean relations, one might

be able to reduce the non-monotone depth complexity of CSP-SATS while retaining

super-polynomial monotone hardness. However, Theorem 1.3.4 shows that this is

impossible, as explained above.

A second possibility is to combine the exponential 2n
ε

monotone circuit size

lower bound for 3-XOR-SATn and a padding argument, since we only need super-

polynomial hardness. Indeed, this argument can be used to define a monotone

function g : {0, 1}n → {0, 1} that is computed by polynomial-size fan-in two circuits

of depth poly(log log n) but requires monotone circuit of size nω(1). However, it is

clear that no padding argument alone can reduce the non-monotone circuit depth

bound to O(1) while retaining the desired monotone hardness.

Given that both the classical widely investigated approximation method for

monotone lower bounds and the more recent lifting technique do not appear to

work in their current forms, for some time it seemed to us that, if true, a signifi-

cantly new technique would be needed to establish a separation similar to the one

in Theorem 1.3.2.

Perhaps surprisingly, it turns out that a more clever approach that combines

padding with a non-trivial circuit upper bound can be used to obtain the result.

35

The first key observation, already present in [GKRS19] and other papers, is that

3-XOR-SATn can be computed not only in NC2 but actually by polynomial-size span

programs over F2. On the other hand, it is known that this model is equivalent in

power to parity branching programs [KW93], which correspond to the non-uniform

version of ⊕L, i.e., counting modulo 2 the number of accepting paths of a nondeter-

ministic Turing machine that uses O(log n) space. A second key idea is that such a

computation can be simulated by AC0[⊕] circuits of sub-exponential size and large

depth. More precisely, similarly to an existing simulation of NL (nondeterministic

logspace) by AC0 circuits of depth d and size 2n
O(1/d)

via a “guess-and-verify” ap-

proach, it is possible to achieve an analogous simulation of ⊕L using AC0[⊕] circuits

(this folklore result appears implicit in [AKR+01] and [OSS19]). Putting everything

together, it follows that for a large enough but constant depth, 3-XOR-SATn can

be computed by AC0[⊕] circuits of size 2n
ε/2

. Since this function is hard against

monotone circuits of size 2n
ε
, a padding argument can now be used to establish a

separation between AC0[⊕] and mSIZE[poly]. (A careful choice of parameters pro-

vides the slightly stronger statement in Theorem 1.3.2.)

Non-trivial monotone simulations and their consequences. In order to con-

clude that significantly stronger monotone simulations imply new complexity sep-

arations (Theorem 1.3.3), we argue contrapositively. By supposing a complexity

collapse, we can exploit known monotone circuit lower bounds to conclude that

a hard monotone function exists in a lower complexity class. For instance, if

NC2 ⊆ NC1, then 3-XOR-SAT ∈ NC1, and we can conclude by standard depth-

reduction for NC1 and padding, together with the exponential lower bound for

3-XOR-SAT due to [GKRS19], that there exists a monotone function in AC0 which

is hard for polynomial-size monotone circuits. The other implications are argued

in a similar fashion. In particular, we avoid the more complicated use of hardness

magnification from [CHO+20] to establish this kind of result, while also getting a

stronger consequence.

A little more work is required in the case of graph properties (Theorem 1.3.3

Items 5 and 6), as padding the function computing a graph property does not yield

a graph property. We give a general lemma that allows us to pad monotone graph

properties while preserving their structure (Lemma 4.2.7). We then argue as in the

case for general functions, using known monotone lower bounds for graph properties.

We note that Lemma 4.2.7 is also important in the proof of Theorem 1.3.1, which

will be discussed below. We believe that our padding technique for graph properties

might find additional applications.

36

Monotone complexity of CSPs. These are the most technical results of Chap-

ter 4. Since explaining the corresponding proofs requires more background and

case analysis, here we only briefly describe the main ideas and references behind

Theorem 1.3.4, Theorem 1.3.5, and the extensions discussed in Section 4.4.

A seminal work of Schaefer [Sch78] proved that any Boolean CSP is either

solvable in polynomial-time or it is NP-complete. Later, Jeavons [Jea98] observed

that the complexity of deciding if a given set of constraint applications of S is

satisfiable depends exclusively on the set Pol(S) of polymorphisms of S. Intuitively,

the set of polymorphisms of a set of relations is a measure of its symmetry. The more

symmetric a set of relations is, the lesser is its expressive power. Jeavons formally

proves this intuition by showing that, if Pol(S) ⊆ Pol(S′), then the problem of

deciding the satisfiability of a given S′-formula can be reduced in polynomial-time

to that of deciding the satisfiability of a given S-formula. This allows Jeavons to

reprove Schaefer’s result.

Existing proofs and classification results for constraint satisfaction problems

do not encode the satisfiability problem as a monotone Boolean function CSP-SATS ,

in the way we described above. We reexamine Schaefer’s and Jeavons’s proofs and

establish that the reduction from CSP-SATS′ to CSP-SATS can also be done with

efficient monotone circuits. Making use of and adapting parts of the refined results

and analysis of [ABI+09], which builds on the earlier dichotomy result of [Sch78]

and provides a detailed picture of the computational complexity of Boolean-valued

CSPs, we prove in fact that the underlying reductions can all be done in monotone

nondeterministic logspace.

Finally, using known upper and lower bounds for monotone circuits together

with a direct analysis of some basic cases, and inspecting Post’s lattice [Pos41,

BCRV03, BCRV04], we are able to show that CSP-SATS is hard for monotone

circuits only when CSP-SATS is ⊕L-complete, as in Theorem 1.3.4 Part 1.

A monotone circuit depth lower bound for a function in AC0. Next, we

combine insights obtained from the monotone lower bound of [GKRS19], our proof

of Theorem 1.3.2 via a guess-and-verify depth reduction and padding, and the state-

ment of Theorem 1.3.4 (limits of the direct approach via CSPs) to get the separa-

tion in Theorem 1.3.1. As alluded to above, our approach differs from those of

[Oko82, AG87, BST13, COS17] and related results in the context of first-order logic

[Sto95, Kup21, Kup22].

Recall that the [GKRS19] framework lifts a Resolution width lower bound for

an unsatisfiable S-formula F into a corresponding monotone circuit size lower bound

37

for CSP-SATS . On the other hand, Theorem 1.3.4 rules out separating constant-

depth circuits from monotone circuits of polynomial size via CSP-SATS functions.

In particular, we cannot directly apply the chain of reductions from [GKRS19] to

obtain the desired separation result. Instead, we extract from the specific S-formula

F that they use a structural property that will allow us to improve the AC0[⊕] upper

from Theorem 1.3.2 to the desired AC0 upper bound in Theorem 1.3.1.

In [GKRS19] the formula F is a Tseitin contradiction, a well-known class

of unsatisfiable CNFs with a number of applications in proof complexity. For an

undirected graph G, the Tseitin formula T (G) encodes a system of linear equations

modulo 2 as follows: each edge e ∈ E(G) becomes a Boolean variable xe, and

each vertex v ∈ V (G) corresponds to a constraint (linear equation) Cv stating that∑
u∈NG(v) x{v,u} = 1 (mod 2), where NG(v) denotes the set of neighbours of v in

G. Crucially, T (G) does not encode an arbitrary system of linear equations, i.e.,

the following key structural property holds: every variable xe appears in exactly 2

equations.

On a technical level, this property is not preserved when obtaining a (total)

monotone function CSP-SATS by the gadget composition employed in the lifting

framework and its reductions. However, we can still hope to explore this property

in a somewhat different argument with the goal of obtaining CSP instances that lie

in a complexity class weaker than ⊕L, which is the main bottleneck in the proof of

Theorem 1.3.2 yielding AC0[⊕] circuits instead of AC0. At the same time, considering

this structural property immediately takes us outside the domain of Theorem 1.3.4,

which does not impose structural conditions over the CSP instances.

We can capture the computational problem corresponding to this type of

system of linear equations using the following Boolean function. Let OddFactorn :

{0, 1}(
n
2) → {0, 1} be the function that accepts a given graph G if the formula T (G)

described above is satisfiable. (Equivalently, if G admits a spanning subgraph in

which the degree of every vertex is odd.) Note that OddFactorn is a monotone

Boolean function: adding edges to G cannot make a satisfiable system unsatisfiable,

since we can always set a new edge variable xe to 0.

While 3-XOR-SAT (the corresponding CSP-SATS function obtained from an

appropriate Tseitin formula via the framework of [GKRS19]) admits a ⊕L upper

bound, we observe that OddFactorn can be computed in L thanks to its more struc-

tured class of input instances. Indeed, one can prove that the formula T (G) is

satisfiable if and only if every connected component of G has an even number of

vertices.3 In turn, the latter condition can be checked in logarithmic space using

3A simple parity argument shows that odd-sized components cannot be satisfied. On the other

38

Reingold’s algorithm for undirected s-t-connectivity [Rei05]. (We note that related

ideas appear in an unpublished note of Johannsen [Joh03].) This is the first appli-

cation of Reingold’s algorithm to this kind of separation.

At the same time, OddFactorn retains at least part of the monotone hardness

of 3-XOR-SAT. Using a different reduction from a communication complexity lower

bound, [BGW99] proved that the monotone circuit depth of OddFactorn is nΩ(1).

Altogether, we obtain a monotone Boolean function (indeed a graph property) that

lies in L but is not in mDEPTH[no(1)]. Applying a guess-and-verify depth reduction

for L and using (graph) padding (analogously to the proof sketch of Theorem 1.3.2),

we get a monotone graph property in AC0 that is not in mDEPTH[logk n]. This

completes the sketch of the proof of Theorem 1.3.1.

2.3 Quantum one-wayness

We will now give an overview of the main technical ingredients of the results

of Chapter 5.

Building OWSGs from PRSs. We first review our improved construction of

one-way state generators from pseudorandom states.

OWSGs from shrinking PRSs. Let us first review the argument from [MY22a] that

an expanding PRS is also a OWSG. Recall that an expanding PRS maps n-bit

strings to m-qubit quantum states, where m ⩾ (1 + c)n for some c > 0. The natural

reduction which uses the OWSG adversary to also break the PRS works. Let A be

a OWSG adversary which outputs k′ such that |ϕk′⟩ is close to |ϕk⟩ using t copies

of |ϕk⟩. Given t+ 1 copies of a state |ψ⟩, we can test whether it is an output of the

PRS or Haar-random as follows: run A on the first t copies to get a state |ϕk′⟩, and

compare |ϕk′⟩ with the last copy of |ψ⟩. If |ψ⟩ = |ϕk⟩ for some k, then |ϕk′⟩ will

be close to |ϕk⟩. If |ψ⟩ is Haar-random, then since it is a random state on (1 + c)n

qubits, with high probability it is far from |ϕk⟩ for all 2n values of k. This is because
2n

2(1+c)n is negligible in n.

To improve this result to PRSs with O(log n)-bit output, we simply improve

the analysis of the exact same reduction. We make the following simple observation

about Haar-random states: for any fixed m-qubit state |ϕ⟩, the probability that a

hand, we can always satisfy an even-sized component by starting with an arbitrary assignment,
which must satisfy an even number of constraints by a parity argument, and flipping the values
of the edges in a path between unsatisfied nodes, until all nodes in the connected component are
satisfied.

39

Haar-random state |ψ⟩ is “close” to |ϕ⟩ is 2−Ω(2m). Thus, in the reduction above, if

|ψ⟩ is a Haar-random state on ω(log n) qubits, then, by a union bound, with high

probability it is far from |ϕk⟩ for all 2n values of k. This argument is enough to derive

Theorem 1.4.2. Using amplification [MY22b], we also find that OWSGs can be built

even from a PRS which outputs log n+O(1) qubits, obtaining Theorem 1.4.1.

Building OWSGs from a fixed-copy PRS. We can instantiate our reduction with

a t-copy PRS (i.e., a PRS that is secure against t copies). Our reduction then

shows that any t-copy PRS is also a (t−1)-copy OWSG. The fact that approximate

t-designs are t-copy PRSs [Kre21] then gives Corollary 1.4.3.

Recently, O’Donnell, Servedio, and Paredes [OSP23] showed that there exists

an efficient 2−λ-approximate t-design on m-qubit quantum states with seed length

n = O(mt+λ) (see Section 5.1.5 for a definition of t-designs). Setting m = ω(log n)

and t = o
(

n
logn

)
shows that approximate o

(
n

logn

)
-designs with ω(log n)-output bits

exist, and thus o
(

n
logn

)
-copy OWSGs also exist. That is, Corollary 1.4.4 holds.

Breaking one-way state generators with a PP oracle. The complexity class

PP is typically defined by referring to Turing machines or randomised algorithms.

These definitions are not very useful when dealing with quantum computing. How-

ever, it turns out that PP has an equivalent formulation with much more obvious

quantum applications, known as PostBQP [Aar05]. PostBQP refers to the class of

problems efficiently solvable by uniform quantum circuits with the additional ability

to postselect. Postselection is another word for performing conditional sampling, and

in the quantum setting refers to the ability to choose the result of a measurement

and acquire the corresponding residual state. Thus, to break any OWSG with a PP

oracle, it suffices to define an algorithm which breaks the OWSG given oracle access

to some language in PostBQP.

Instead of breaking OWSGs with a PostBQP oracle directly, we rely on a

recent result which constructs an interesting classical output primitive, a one-way

puzzle, from any OWSG [KT23]. Formally, a one-way puzzle is a pair of algorithms

(Samp,Ver) where Samp samples a key-puzzle pair (k, s) such that Ver(k, s) outputs

1 with overwhelming probability. Samp is required to be an efficient quantum al-

gorithm, and Ver is allowed to be any arbitrary function. The security requirement

is that given s, it is hard for an adversary to find a k′ such that Ver(k′, s) = 1.

Morally, a one-way puzzle is a one-way function where the input and output are

sampled together.

It is clear that any one-way puzzle (Samp,Ver) can be broken by an adversary

40

with the ability to postselect. Given a puzzle s, the adversary can simply run Samp

up until it would measure the output state, and then postselect on the output puzzle

being s. Measuring the output key will then give a k′ which with high probability

will satisfy Ver(s, k′) = 1. This attack can be viewed as a search version of the

attack of [Kre21] against any λ-output PRS.

But note that this attack makes use of postselecting directly. It is unclear

how to translate this into an attack with a decision oracle for PP. To solve this, we

show that it is possible in general to perform conditional sampling given access to

a PP oracle:

Lemma 2.3.1 (Informal version of Lemma 5.3.2). Let Samp be a (uniform) quantum

polynomial time algorithm such that Samp(1n) outputs a pair of classical strings

(k, s). There exists a poly-time quantum algorithm A and a PP language L such

that AL takes as input s′ and outputs k′, and whose distribution has total variation

distance at most 1/n from the distribution (Samp | s′)key defined by

P[(Samp | s′)key → k′] = P
Samp(1n)→(k,s)

[k = k′|s = s′].

(In other words, we denote by (Samp | s′)key the distribution of keys generated by

Samp(1n) conditioned on the puzzle being equal to s′.)

This lemma is in some sense a “search-to-decision” style argument for PP.

The argument goes along the same lines as the search-to-decision reduction for SAT.

Note that with a PostBQP oracle, we can test whether or not it is possible for an

algorithm Samp to produce any given output x by simply postselecting on x being

produced by Samp.

A naive approach to sampling k′ from (Samp | s′)key is to sample k′ bit by bit.

It is possible with a PP oracle to check whether any given output is in the range of

Samp. Thus, we can begin by checking whether (1, s′) is in the range of Samp with

all but the first bit of the key discarded. If so, we can set the first bit of k′ to be

1, otherwise 0. In the next step, we can check whether (k′1 ◦ 1, s′) is in the range of

Samp with all but the second bit of the key discarded. If so, we can set the second

bit of k′ to be 1, otherwise 0. Repeating this process for each bit of the key will

uniformly select an output k′ from the range of (Samp | s′)key.
However, (Samp | s′)key is not necessarily a flat distribution, and so the re-

sulting distribution on k′ may be very different from (Samp | s′)key. However, this

can be resolved by noticing a key fact. Using a PP oracle, it is possible to estimate

the probability that the first bit of the output of Samp is 1 conditioned on the output

puzzle being s′. Thus, we can use the same technique as before, but instead of just

41

setting each bit of k′, we can sample each bit according to our approximation of

the correct conditional distribution. Although the error will add up, we can set our

initial error to be small enough that the distribution over k′ will be sufficiently close

to (Samp | s′)key.
Applying Lemma 2.3.1 to our postselecting attack against one-way puzzles

gives us an efficient quantum attack against one-way puzzles using a PP oracle.

As one-way puzzles can be built from one-way state generators, this immediately

implies Theorem 1.4.5.

More on search-to-decision reductions using a PP oracle. The ability of a postse-

lection oracle to aid in search-to-decision reductions was first noted by [INN+22],

where it was shown that a quantum poly-time algorithm can find a QMA witness

by making one quantum query to a PP oracle. They use very different techniques,

and in fact our algorithm requires many classical queries instead of one quantum

query.

42

Chapter 3

Algorithms and Lower Bounds

for Comparator Circuits from

Shrinkage

Abstract

Comparator circuits are a natural circuit model for studying bounded fan-out com-

putation whose power sits between nondeterministic branching programs and general cir-

cuits. Despite having been studied for nearly three decades, the first superlinear lower bound

against comparator circuits was proved only recently by Gál and Robere [GR20], who es-

tablished a Ω
(
(n/ log n)1.5

)
lower bound on the size of comparator circuits computing an

explicit function of n bits.

In this chapter, we initiate the study of average-case complexity and circuit analysis

algorithms for comparator circuits. Departing from previous approaches, we exploit the

technique of shrinkage under random restrictions to obtain a variety of new results for this

model. Among them, we show

– Average-case Lower Bounds (Section 3.2). For every k = k(n) with k ⩾ log n,

there exists a polynomial-time computable function fk on n bits such that, for every

comparator circuit C with at most n1.5/O
(
k ·
√

log n
)

gates, we have

P
x∈{0,1}n

[C(x) = fk(x)] ⩽
1

2
+

1

2Ω(k)
.

This average-case lower bound matches the worst-case lower bound of [GR20] by

letting k = O(log n).

– #SAT Algorithms (Section 3.4). There is an algorithm that counts the number of

satisfying assignments of a given comparator circuit with at most n1.5/O
(
k ·
√

log n
)

43

gates, in time 2n−k · poly(n), for any k ⩽ n/4. The running time is non-trivial (i.e.,

2n/nω(1)) when k = ω(log n).

– Pseudorandom Generators and MCSP Lower Bounds (Section 3.5). There

is a pseudorandom generator of seed length s2/3+o(1) that fools comparator circuits

with s gates. Also, using this PRG, we obtain an n1.5−o(1) lower bound for MCSP

against comparator circuits.

Organisation of the chapter

After reviewing preliminary definitions and results in Section 3.1, we will present our

average-case lower bounds against comparator circuits in Section 3.2, and average-

case lower bounds against various other circuit models in Section 3.3. We will then

present and prove our #SAT algorithms (Section 3.4), pseudorandom generators

and a MCSP lower bound (Section 3.5), and a learning algorithm (Section 3.6).

3.1 Preliminaries

In this section, we review some basic definitions, including that of random

restrictions and comparator circuits, which will be used throughout the chapter. We

also review structural properties of comparator circuits based on previous work.

3.1.1 Definitions and notations

For n ∈ N, we denote {1, . . . , n} by [n]. Fix a universal Turing machine U .

For a string x, the Kolmogorov complexity of x, denoted as KU (x), is the length of the

smallest binary string ρ such that U(ρ) = x. It’s known that, for any sufficiently

efficient universal Turing machine, the value of KU (x) does not change by more

than an additive constant for all x (see, e.g., [LV08, Theorem 2.11]). Since such a

difference will not affect any of our results, we will omit U and simply write K(x).1

Restrictions. A restriction for an n-variate Boolean function f , denoted by

ρ ∈ {0, 1, ∗}n, specifies a way of fixing the values of some subset of variables for

f . That is, if ρ(i) is ∗, we leave the i-th variable unrestricted and otherwise fix its

value to be ρ(i) ∈ {0, 1}. We denote by f ↾ρ: {0, 1}ρ
−1(∗) → {0, 1} the restricted

function after the variables are restricted according to ρ, where ρ−1(∗) is the set of

unrestricted variables.

1We also note that variations on the number of tapes of U and similar considerations will also
not change the Kolmogorov complexity by more than an additive constant.

44

Comparator circuits. We define comparator circuits as a set of wires labelled

by an input literal (a variable xi or its negation ¬xi) or a Boolean constant (0 or

1), a sequence of gates, which are ordered pairs of wires, and a designated output

wire. In other words, each gate is a pair of wires (wi, wj), denoting that the wire

wi receives the logical conjunction (∧) of the wires, and wj receives the logical

disjunction (∨). On a given input a, a comparator circuit computes as follows: each

wire labelled with a literal xi is initialised with ai, and we update the value of the

wires by following the sequence of gates; the output wire contains the result of the

computation. A wire is called non-trivial if there is a gate connected to this wire.

Note that, if a comparator circuit has ℓ non-trivial wires and s gates, then ℓ ⩽ s.

This means that lower bounds on the number of wires also imply lower bounds on

the number of gates.

As discussed in the Introduction (Section 1.2), comparator circuits can be

seen as a model of circuits of bounded fan-out. In particular, this means that

comparator circuits, like formulas, cannot create a COPY gate, which creates two

copies of the same input bit. This follows more formally from the definition above

by noticing that the output of a comparator circuit always has the same Hamming

weight of its input.

3.1.2 Structural properties of comparator circuits

For a gate g in a comparator circuit and an input x ∈ {0, 1}n, we denote by

ug(x) (resp. vg(x)) the first (resp. second) in-value to the gate g when given x as

input to the circuit.

Definition 3.1.1 (Useless Gates). We say that a gate g in a comparator circuit is

useless if either one of the following is true:

1. for every input x, (ug(x), vg(x)) ∈ {(0, 1), (0, 0), (1, 1)}.

2. for every input x, (ug(x), vg(x)) ∈ {(1, 0), (0, 0), (1, 1)}.

We say that a useless gate is of TYPE-1 (resp. TYPE-2) if it is the first (resp.

second) case. Also, a gate is called useful if it is not useless.

The following proposition allows us to remove useless gates from a compara-

tor circuit. It has a simple proof which we give here for completeness.

Proposition 3.1.2 ([GR20, Proof of Proposition 3.2]). Let C be a comparator

circuit whose gates are g1, g2, . . . , gs (where gs is the output gate) and let gi = (α, β)

be any useless gate in C.

45

• Suppose gi is of TYPE-1. Then the circuit C ′ obtained from C by removing

the gate gi computes the same function as that of C.

• Suppose gi is of TYPE-2. Let C ′ be the circuit whose gates are

g1, g2, . . . , gi−1, g
′
i+1 . . . , g

′
s,

where for j = i + 1, . . . , s, g′j is obtained from gj by replacing α with β (if gj

contains α) and at the same time replacing β with α (if gj contains β). Then

C ′ computes the same function as that of C.

Proof. On the one hand, if g is a TYPE-1 useless gate, then for every input to the

circuit, the out-values of g are the same as its in-values, so removing g does not

affect the function computed by the original circuit. On the other hand, if g is of

TYPE-2, then the in-values feeding to g will get swapped after g is applied. This

has the same effect as removing g and “re-wiring” the gates after g so that a gate

connecting one of the wires of g gets switched to connect the other wire of g, as

described in the second item of the proposition.

We need the following powerful structural result for comparator circuits from

[GR20].

Theorem 3.1.3 ([GR20, Theorem 1.2]). If C be is a comparator circuit with ℓ wires

and s gates such that every gate in C is useful, then s ⩽ ℓ · (ℓ− 1)/2.

Proposition 3.1.2 and Theorem 3.1.3 together give the following lemma.

Lemma 3.1.4. Every comparator circuit with ℓ > 0 wires has an equivalent com-

parator circuit with ℓ wires and with at most ℓ · (ℓ− 1)/2 gates.

3.2 Average-case Lower Bounds

In this section, we prove our average-case lower bound against comparator

circuits. We first describe the hard function.

3.2.1 The hard function

List-decodable codes. Recall that a (ζ, L)-list-decodable binary code is a func-

tion Enc: {0, 1}n → {0, 1}m that maps n-bit messages to m-bit codewords so that,

for each y ∈ {0, 1}m, there are at most L codewords in the range of Enc that have

relative hamming distance at most ζ from y. We will use the following list-decodable

code.

46

Theorem 3.2.1 (See e.g., [CKK+15, Proof of Theorem 6.4]). There is a constant

c > 0 such that for any given k = k(n) > c · log n, there exists a binary code

Enc mapping n-bit message to a codeword of length 2k, such that Enc is (ζ, L)-

list-decodable for ζ = 1/2 − O
(
n/2k/2

)
and L ⩽ O

(
2k/2/n

)
. Furthermore, there is

a polynomial-time algorithm for computing the i-th bit of Enc(x), for any inputs

x ∈ {0, 1}n and i ∈
[
2k
]
.

Definition 3.2.2 (Generalised Andreev’s Function). Let k be a positive integer.

Define Ak : {0, 1}n+n → {0, 1} as follow:

Ak(x1, . . . , xn, y1, . . . , yn) := Enc(x1, . . . , xn)α(y1,...,yn),

where Enc is the code from Theorem 3.2.1 that maps n bits to 2k bits, and α : {0, 1}n →
{0, 1}k is defined as

α(y1, . . . , yn) :=

n/k⊕
i=1

yi,

2n/k⊕
i=n/k+1

yi, . . . ,

n⊕
i=(k−1)n/k+1

yi

 .

That is, the function α partitions y evenly into k consecutive blocks and outputs the

parities of the variables in each block.

Note that the function Ak defined above is polynomial-time computable since

we can compute α(y) and Enc(x)i for any given i in poly(n) time.

3.2.2 Proof of the average-case lower bound

We will show a lower bound on the number of wires, which automatically

implies a lower bound on the number of gates.

Theorem 3.2.3. There exist constants c, d ⩾ 1 such that the following holds. For

any k ⩾ c · log n, there is a polynomial-time computable function fk such that, for

every comparator circuit C whose number of wires is

n1.5

d · k ·
√

log n
,

we have

P
x∈{0,1}n

[fk(x) = C(x)] ⩽
1

2
+

1

2Ω(k)
.

Proof. Let Ak be the generalised Andreev’s function on 2n variables. Let C be a

comparator circuit on 2n variables with ℓ ⩽ n1.5/
(
d · k ·

√
log n

)
wires, where d ⩾ 1

47

is a sufficiently large constant. To avoid some technicalities due to divisibility that

can be overcome easily, we assume that n is divisible by k.

We need to upper bound the following probability.

P
x,y∈{0,1}n×{0,1}n

[Ak(x, y) = C(x, y)] ⩽ P
x,y

[Ak(x, y) = C(x, y) | K(x) ⩾ n/2]

+ P
x
[K(x) < n/2]

⩽ P
x,y

[Ak(x, y) = C(x, y) | K(x) ⩾ n/2] +
1

2n/2
.

Let x be any fixed n-bit string with Kolmogorov complexity at least n/2. Let

A′ : {0, 1}n → {0, 1} be

A′(y) := Ak(x, y),

and let C ′ be a comparator circuit on n variables with at most ℓ wires defined as

C ′(y) := C(x, y).

We will show that

P
y∈{0,1}n

[
A′(y) = C ′(y)

]
⩽

1

2
+

n

2k/4
.

First of all, let us divide the n variables of C ′ into n/k parts, each of which

contains k variables, as follows. We first partition the n variables evenly into k

consecutive blocks, denoted as B1, B2, . . . , Bk. Then we define the i-th part Si,

where i ∈ [n/k], to be the union of the i-th variables in each of B1, B2, . . . , Bk.

That is

Si :=
⋃
j∈[k]

{y : y is the i-th variables of Bj} .

Now we count the number of wires that are labelled by the variables in each Si and

let

wi := |{u : u is a wire labelled by some x ∈ Si (or its negation)}| .

We have ∑
i∈[n/k]

wi = ℓ,

which implies that there is a particular i ∈ [n/k] such that

wi ⩽
ℓ

n/k
⩽

1

d
·
√

n

log n
=: ℓ0.

Next, we will consider restrictions that fix the values of the variables outside

48

Si. Note that if we fix the value of a variable xi in a comparator circuit, then we can

obtain a restricted circuit so that all the wires that are labelled by either xi or ¬xi
are eliminated, after some appropriate updates on the gates in the circuit. This is

not an obvious fact. One way to see this is that once we fix the value of a wire, the

gate that directly connects this wire becomes useless in the sense of Definition 3.1.1

so it can be removed after some appropriate “re-wirings” of the gates in the circuit

as described in Proposition 3.1.2. Then we can keep doing this until no gate is

connected to that wire, in which case the wire can be removed from the circuit.

Now we have

P
y∈{0,1}n

[
A′(y) = C ′(y)

]
= P

ρ∈{0,1}[n]\Si ,z∈{0,1}k

[
A′↾ρ (z) = C ′↾ρ (z)

]
.

It suffices to upper bound

P
z∈{0,1}k

[
A′↾ρ (z) = C ′↾ρ (z)

]
,

for every ρ ∈ {0, 1}[n]\Si . For the sake of contradiction, suppose for some ρ, we have

1

2
+

n

2k/4
< P

z∈{0,1}k

[
A′↾ρ (z) = C ′↾ρ (z)

]
= P

z∈{0,1}k

[
Enc(x)α = C ′↾ρ (z)

]
, (3.1)

where α ∈ {0, 1}k is

αj := Parity
(
ρ|Bj\Si

)
⊕ zj ,

and ρ|Bj\Si
denotes the partial assignment given by ρ but restricted to only variables

in the set Bj\Si. Note that α is uniformly distributed for uniformly random z.

Therefore, if we have the values of Parity
(
ρ|Bj\Si

)
for each j ∈ [k] (k bits in total),

and if we know the restricted circuit C ′ ↾ρ, then we can compute the codeword

Enc(x) correctly on at least 1/2 +n/2k/4 positions, by evaluating C ′↾ρ (z) for every

z ∈ {0, 1}k. As a result, we can list-decode Enc(x), and, using additional k/2 bits

(to specify the index of x in the list), we can recover x exactly. Finally, note that

the number of wires in C ′↾ρ is at most ℓ0. Therefore, by Lemma 3.1.4, such a circuit

can be described using a string of length at most

O
(
ℓ0 · log(n) + ℓ20 · log(ℓ0)

)
⩽ O

(
ℓ20 · log n

)
= O

(
n

d2 · log n
· log n

)
⩽ n/4,

49

where the last inequality holds when d is sufficiently large. Therefore, we can re-

cover2 x using less than

n/4 + k + k/2 +O(log n) < n/2

bits. Here we assume k ⩽ n/8 since otherwise the theorem can be shown trivially.

This contradicts the fact that the Kolmogorov complexity of x is at least n/2.

3.3 Tight Average-case Lower Bounds from a Nečiporuk-

Type Property

Here, we describe a generalisation of the average-case lower bound in Sec-

tion 3.2 to circuit classes whose worst-case lower bounds can be proved via Nečiporuk’s

method.

Theorem 3.3.1. There is a constant c > 1 such that the following holds. Let C
be a class of Boolean circuits that is closed under restrictions. Suppose that, for

any k ∈ [c · log n, n/3], there exists a partition of the n variables into m := n/k

equal-sized blocks S1, S2, . . . , Sm and a collection of k-input-bit functions H such

that

1. |H| ⩽ 2n/2, and

2. for every C ∈ Cn of size s(n, k), we have {C↾ρ}ρ∈{0,1}[n]\Si ⊆ H for some block

Si.

Then for any k ∈ [c · log n, n/6], there exists a polynomial-time computable function

fk which satisfies

P
x∈{0,1}n

[C(x) = fk(x)] ⩽
1

2
+

1

2Ω(k)
,

for every C ∈ Cn of size s(n/2, k).

Remark. In the original Nečiporuk’s argument for getting worst-case lower bounds,

it is only required that, for every C ∈ C, there is some block such that the number

of distinct functions, after fixing the variables outside of the block, is at most 2n/2,

and this set of functions can be different for different C. For Theorem 3.3.1, we need

2Here, ‘recover’ means that it’s possible to write a program for a fixed universal Turing machine
with the above information hard-coded into it which outputs x. The entire description of the
program will be the length of the concatenation of the above binary strings, plus an O(1) overhead
to account for the algorithm itself. This bounds the Kolmogorov complexity of x.

50

something stronger which says that it is the same set of 2n/2 functions for every

C. We remark that, though the weaker condition is sufficient for worst-case lower

bounds, all applications of Nečiporuk’s method known to us also prove the stronger

condition, thus yielding average-case lower bounds by Theorem 3.3.1.

Theorem 3.3.1 requires a slightly different argument than that of Theo-

rem 3.2.3. Its proof is presented in Section 3.3.1 below.

By combining Theorem 3.3.1 with known structural properties for various

models (see e.g., [Juk12]), we get that for the class of circuits C of size s, where

• C is the class of general formulas, and s = n2/O(k), or

• C is the class of deterministic branching programs or switching networks, and

s = n2/O(k · log n), or

• C is the class of nondeterministic branching programs, parity branching pro-

grams, or span programs, and s = n1.5/O(k),

there exists a function fk such that Px∈{0,1}n [C(x) = fk(x)] ⩽ 1/2 + 1/2Ω(k) for

every C ∈ C, which matches the state-of-the-art worst-case lower bounds (up to a

multiplicative constant) by letting k = O(log n).

3.3.1 Proof of Theorem 3.3.1

We need to slightly modify the hard function in Definition 3.2.2 (particu-

larly the function α) to adjust an arbitrary partition as in Theorem 3.3.1. For an

integer k and a partition of n variables into n/k equal-sized blocks, denoted by

S :=
{
S1, S2, . . . , Sn/k

}
, define AS,k : {0, 1}n+n → {0, 1} as follows:

AS,k(x1, . . . , xn, y1, . . . , yn) := Enc(x1, . . . , xn)α(y1,...,yn),

where Enc is the code from Theorem 3.2.1 that maps n bits to 2k bits, and α : {0, 1}n →
{0, 1}k is defined as

α(y1, . . . , yn) :=

⊕
z∈B1

z,
⊕
z∈B2

z, . . . ,
⊕
z∈Bk

z

 ,

where Bj :=
⋃
i∈[n/k] {z : z is the j-th variables of Si}.

Good x. We will need the following lemma which says that for most x ∈ {0, 1}n,

the codeword of x is hard to approximate for any fixed small set of functions.

51

Lemma 3.3.2. Let k be such that c · log n ⩽ k ⩽ n/3, where c is the constant from

Theorem 3.2.1, and let Enc be the code from Theorem 3.2.1 that maps n bits to 2k

bits. Let H′ be a set of k-input-bit Boolean functions such that |H′| ⩽ 22n/3. Then,

with probability at least 1 − 1/2n/2 over a random x ∈ {0, 1}n, the following holds

for every f ∈ H′:
P

z∈{0,1}k
[f(z) = Enc(x)z] ⩽

1

2
+

n

2k/4
. (3.2)

Proof. The proof is by a counting argument. For every f ∈ H′, consider the 2k-bit

string tt(f) which is the truth table computed by f . Let us say x is bad for f if

Equation (3.2) does not hold, which means that tt(f) and Enc(x) agree on more

than 1/2 + n/2k/4 positions. By the list-decodability of Enc, the number of such

x’s is at most O
(
2k/2/n

)
. By an union bound over all the 22n/3 functions in H′, the

fraction of bad x’s is at most

O
(
2k/2/n

)
· 22n/3

2n
<

1

2n/2
,

as desired.

We are now ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Let A := AS,k be the hard function on 2n variables defined

as above, where S is the partition in the statement of the theorem, and let

Bj :=
⋃

i∈[n/k]

{z : z is the j-th variables of Si} .

Also, let H′ be the set of k-input-bit Boolean functions defined as follows:

H′ :=
{
f : ∃h ∈ H and w ∈ {0, 1}k, such that f(z) = h(z ⊕ w) for all z ∈ {0, 1}k

}
.

That is, H′ is the set of all possible “shifted” functions in H. By Lemma 3.3.2, with

probability at least 1− 1/2n/2 over a random x ∈ {0, 1}n, for every f ∈ H′ we have

P
z∈{0,1}k

[f(z) = Enc(x)z] ⩽
1

2
+

n

2k/4
. (3.3)

Let us call x good if it satisfies Equation (3.3).

To show the theorem, we need to upper bound the following probability, for

52

every circuit C0 ∈ C2n of size s(n, k):

P
x,y∈{0,1}n×{0,1}n

[A(x, y) = C0(x, y)] ⩽ P
x,y

[A(x, y) = C0(x, y) | x is good]

+ P
x
[x is not good]

⩽ P
x,y

[A(x, y) = C0(x, y) | x is good] +
1

2n/2
.

Let x be any fixed n-bit string that is good. Let A′ : {0, 1}n → {0, 1} be

A′(y) := A(x, y),

and let C be the circuit defined as

C(y) := C0(x, y).

Note that since the class C is closed under restriction, C is a circuit from Cn with

size at most s(n, k). We will show that

P
y∈{0,1}n

[
A′(y) = C(y)

]
⩽

1

2
+

n

2k/4
.

Let Si be the block in the assumption of the theorem such that

{C↾ρ}ρ∈{0,1}[n]\Si ⊆ H.

We have

P
y∈{0,1}n

[
A′(y) = C(y)

]
= P

ρ∈{0,1}[n]\Si ,z∈{0,1}k

[
A′↾ρ (z) = C↾ρ (z)

]
.

It suffices to upper bound

P
z∈{0,1}k

[
A′↾ρ (z) = C↾ρ (z)

]
for every ρ ∈ {0, 1}[n]\Si . For the sake of contradiction, suppose for some ρ, we have

1

2
+

n

2k/4
< P

z∈{0,1}k

[
A′↾ρ (z) = C↾ρ (z)

]
= P

z∈{0,1}k
[Enc(x)α = C↾ρ (z)] , (3.4)

where α ∈ {0, 1}k is

αj := Parity
(
ρ|Bj\Si

)
⊕ zj ,

53

and ρ|Bj\Si
denotes the partial assignment given by ρ but restricted to only variables

in the set Bj\Si. That is, α is some “shift” of z, so α is uniformly distributed for

uniformly random z. Therefore, Equation (3.4) implies

P
z∈{0,1}k

[Enc(x)z = C↾ρ (z ⊕ w)] >
1

2
+

n

2k/4
,

for some w ∈ {0, 1}k. This gives a function in H′ that computes Enc(x) on more

than 1/2 + n/2k/4 positions, which contradicts the assumption that x is good.

3.4 #SAT Algorithms

In this section, we present our #SAT algorithm for comparator circuits. As

mentioned briefly in Section 2.2, we will need a preprocessed data structure that

enables us to efficiently convert a circuit with small number of wires but large number

of gates to an equivalent circuit (with the same number of wires) whose number of

gates is at most quadratic in the number wires.

3.4.1 Memorisation and simplification of comparator circuits

Lemma 3.4.1. Let n, ℓ ⩾ 1 be integers. For any fixed labelling of ℓ wires on n

variables, there is a data structure DS such that

• DS can be constructed in time 2n · ℓO(ℓ2).

• Given access to DS and given any comparator circuit C with ℓ wires (whose

labelling is consistent with the one used for DS) and s gates, we can output

in time poly(s, ℓ) the number of satisfying assignments of C. Moreover, we

obtain a comparator circuit with ℓ wires and at most ℓ · (ℓ− 1)/2 gates that is

equivalent to C.

Proof. We know that every comparator circuit with ℓ wires has an equivalent circuit

with ℓ·(ℓ−1)/2 gates (Lemma 3.1.4). Therefore, we can try to memorise the number

of satisfying assignments for each of these circuits (by brute-force). Then for a given

circuit C with ℓ wires and s gates where s ≫ poly(ℓ), we need to simplify C to be

a circuit with ℓ · (ℓ − 1)/2 gates so that we can look up its number of satisfying

assignments, which was already computed. However, it is not clear how we can

efficiently simplify such a comparator circuit.

The idea here is to remove the useless gates one by one (from left to right).

To do this, firstly, we need to be able to tell whether a gate is useless, and secondly

54

whenever we remove a useless gate, we need to “re-wire” the gates that come after

that gate, which can depend on the types of the useless gate that we are removing,

as described in Proposition 3.1.2.

More specifically, DS will be a “tree-like” structure of depth at most ℓ · (ℓ−
1)/2 + 2 where the internal nodes are labelled as gates. Note that a path from the

root to any internal node in the tree gives a sequence of gates, which specifies a

comparator circuit up to a choice of the output wire. We will require the label of

every internal node to be a useful gate in the circuit specified by the path from the

root to the node. In other words, each internal node will branch on all possible useful

gates that could occur next in the circuit. Moreover, each leaf is either labelled as

a useless gate, with respect to the circuit specified by the path from the root to the

current leaf, or is labelled as a single wire that is designed to be the output wire.

For every leaf that is a useless gate, we store its type, and for each leaf that

is a single wire, we store the number of satisfying assignments of the circuit that is

specified by the path from the root to the leaf. Moreover, each internal node is a

useful gate whose children are indexed by the set of all possible gates (each is an

ordered pair of wires) and the set of wires (called an output leaf). Note that checking

whether a new gate is useless and computing its type require evaluating the current

circuit on all possible inputs, which takes time 2n · poly(ℓ), but this is fine with our

running time. Similarly, we can compute the number of satisfying assignments in

each output leaf by brute force. Note that by Theorem 3.1.3, the depth of such a

tree is at most ℓ · (ℓ− 1)/2 + 2, otherwise there would be a comparator circuit with

ℓ wires that has more than ℓ · (ℓ − 1)/2 useful gates. Since each internal node has

at most ℓ2 children, the tree has at most ℓ
O
(
ℓ
2
)

nodes in total. Since each node can

be constructed in time 2n · poly(ℓ), the running time is clear.

To look up the number of the satisfying assignments of a given circuit C

(with a labelling of the wires that is consistent with the one used for DS), we start

from the root of DS, and move down the tree as we look at the gates in C one by

one (from left to right in the natural way). If we reach an output leaf, we output

the number of satisfying assignments stored in that leaf. However, if we reach a

leaf v that is specified as a useless gate, we remove the corresponding gate in C and

update the gates that come after it according to the type of this useless gate, using

Proposition 3.1.2. Once we update the circuit, we start again from the parent of v

and look at the next gate in the updated circuit. We repeat this until we reach an

output leaf.

55

3.4.2 The algorithm

We will show an algorithm for comparator circuits with small number of

wires, while the number of gates can be polynomial.

Theorem 3.4.2. There is a constant d > 1 and a deterministic algorithm such that

for every k ⩽ n/4, given a comparator circuit on n variables with at most

n1.5

d · k ·
√

log n

wires and poly(n) gates, the algorithm outputs the number of satisfying assignments

of C in time

2n−k · poly(n).

Proof. Let C be a comparator circuit with ℓ ⩽ n1.5/
(
d · k ·

√
log n

)
wires and poly(n)

gates, where d ⩾ 1 is a sufficiently large constant.

We partition the n variables almost-evenly into ⌊n/k⌋ consecutive blocks,

denoted as S1, S2, . . . , S⌊n/k⌋. We then count the number of wires that are labelled

by the variables in each Si and let

wi := |{u : u is a wire labelled by some x ∈ Si (or its negation)}| .

We have ∑
i∈[⌊n/k⌋]

wi = ℓ,

which implies that there is a particular i ∈ [k] such that

wi ⩽
ℓ

⌊n/k⌋
⩽

1

d
·
√

n

log n
=: ℓ0.

Moreover, we can find such i efficiently.

Constructing DS. Using Lemma 3.4.1, we create a data structure DS with wi

wires and |Si| ⩽ k variables and a labelling consistent with that of C for the wires

labelled by variables from Si. This can be done in time

2k · ℓO(ℓ20)
0 = 2k+O(ℓ20·log ℓ0) ⩽ 2k+n/2.

Enumeration. For each ρ ∈ {0, 1}[n]\Si , we obtain a restricted circuit C ↾ρ (on

either k or k + 1 variables), which has ℓ0 wires (whose labelling is consistent with

the one used for DS created above) and has poly(n) gates. Then using DS, we can

56

efficiently look up the number of satisfying assignments of C↾ρ. Finally we sum over

these numbers over all such ρ’s and this gives the number of satisfying assignments

of C.

The total running time of the above algorithm is

2k+n/2 + 2n−k · poly(n) = 2n−k · poly(n),

as desired.

3.5 Pseudorandom Generators andMCSP Lower Bounds

In this section, we show a PRG for small comparator circuits, and derive

from it lower bounds for comparator circuits computing MCSP.

3.5.1 Proof of the PRG

We start with some definitions and notations.

• For a Boolean function f , we denote by ℓ(f) the minimum number of wires in

a comparator circuit computing f .

• We will often describe a restriction ρ ∈ {0, 1, ∗}n as a pair (σ, β) ∈ {0, 1}n ×
{0, 1}n. The string σ is the characteristic vector of the set of coordinates

that are assigned ∗ by ρ, and β is an assignment of values to the remaining

coordinates. The string σ is also called a selection.

• We say that a distribution D on {0, 1}n is a p-regular random selection if

Pσ∼D [σ(i) = 1] = p for every i ∈ [n].

As mentioned in Section 2.2, we will need a result saying that the number

of wires in a comparator circuit shrinks with high probability under pseudorandom

restrictions.

Lemma 3.5.1. Let c be a constant and let f : {0, 1}n → {0, 1}. Let ℓ := ℓ(f)

and p = ℓ−2/3, and suppose that ℓ = nΩ(1). There exists a p-regular pseudorandom

selection D over n variables that is samplable using r = poly log(ℓ) random bits such

that

P
σ∼D, β∼{0,1}n

[
ℓ(f↾(σ,β)) ⩾ 23

√
c log ℓ · pℓ

]
⩽ 2 · ℓ−c.

Moreover, there exists a circuit of size poly log(ℓ) such that, given j ∈ {0, 1}logn and

a seed z ∈ {0, 1}r, the circuit computes the j-th coordinate of D(z).

57

The proof of Lemma 3.5.1 follows closely that of [IMZ19, Lemma 5.3], ex-

cept for that here we also need to show that the pseudorandom restriction can be

computed with small size circuits. Such a restriction is proved to exist in Lemma 18

of [CKLM20]. For completeness, a proof is presented in Section 3.5.3.

Theorem 3.5.2 (Local PRGs). For every n ∈ N, ℓ = nΩ(1), and ε ⩾ 1/poly(n),

there is a pseudorandom generator G : {0, 1}r → {0, 1}n, with seed length

r = ℓ2/3+o(1)

that ε-fools comparator circuits with ℓ wires over n variables. Moreover, for every

seed z ∈ {0, 1}r, there is a circuit Dz of size ℓ2/3+o(1) such that, given as input

j ∈ [n], Dz computes the j-th bit of G(z).

Proof Sketch. In [IMZ19], it is shown that if a circuit class “shrinks” with high

probability under a pseudorandom restriction, then we can construct pseudoran-

dom generators for this circuit class with non-trivial seed-length. The authors

of [CKLM20] then showed that if the same shrinkage property holds for random

selections that can be efficiently sampled and computed, then we can obtain local

PRGs. In Lemma 3.5.1, we proved exactly what is required by [CKLM20] to obtain

local PRGs for comparator circuits.

More specifically, by following the proof of [CKLM20, Lemma 16], we can

derive the theorem, adjusting the parameters there in a natural way. In particular,

we will use p := ℓ−2/3 so that after the pseudorandom restriction in Lemma 3.5.1,

the restricted comparator circuit has at most ℓ0 := 2O(
√
log ℓ) · pℓ = 2O(

√
log ℓ) · ℓ1/3

wires (with high probability). Another observation needed in the proof is that,

by Lemma 3.1.4, there can be at most 2ℓ
2/3+o(1)

distinct functions for comparator

circuits with this many wires. We omit the details here.

3.5.2 Proof of the MCSP lower bound

We prove the following stronger result which implies Theorem 1.2.4.

Theorem 3.5.3. For every large enough n ∈ N, any ε > 0 and any 0 < α ⩽ 1− ε,
MCSP[nα] on inputs of length n cannot be computed by comparator circuits with

n1+α/2−ε wires.

Proof. Let f denote the function MCSP[nα] on inputs of length n. For the sake of

contradiction, suppose f can be computed by a comparator circuit C with n1+α/2−ε

wires, for some ε > 0.

58

Let k := nα+ε/2. Consider an (almost-even) partition of the n variables

into ⌊n/k⌋ consecutive blocks, denoted as S1, S2, . . . , S⌊n/k⌋. Again, by an averaging

argument, there is some i ∈ [⌊n/k⌋] such that after fixing the values of the variables

outside Si, the number of wires in the restricted circuit is at most

ℓ := n1+α/2−ε/⌊n/k⌋ = n1.5α−ε/2.

Let ρ be a restriction that fixes the values of the variables outside Si to be 0 and

leaves the variables in Si unrestricted. Let G be the PRG from Theorem 3.5.2 that

has seed length r := ℓ2/3+o(1) and (1/3)-fools comparator circuits with at most ℓ

wires.

On the one hand, since |Si| ⩾ k, then by a counting argument, for a uniformly

random x ∈ {0, 1}n, the circuit size of the truth table given by ρ ◦ x is at least

k/(10 log k) > nα, with probability at least 1/2. In other words,

P
x∈{0,1}n

[f↾ρ (x) = 1] ⩽ 1/2.

On the other hand, by the second item of Theorem 3.5.2, for any seed z ∈ {0, 1}r,
the output of the PRG G(z), viewed as a truth table, represents a function that

can be computed by a circuit of size ℓ2/3+o(1). Then knowing i ∈ [n] (which can be

encoded using log(n) bits), the truth table given by ρ ◦G(z) has circuit size at most

poly log(n) + ℓ2/3+o(1) ⩽ nα.

This implies

P
z∈{0,1}r

[C↾ρ (G(z)) = 1] = 1,

which contradicts the security of G.

3.5.3 Pseudorandom Shrinkage for Comparator Circuits: Proof of

Lemma 3.5.1

We now give a proof of Lemma 3.5.1, combining the arguments of [IMZ19]

for branching programs and formulas.

Technical tools. We will need a Chernoff-Hoeffding bounds for distributions with

bounded independence from [SSS95] (Lemmas 2.3 in [IMZ19]). Recall that a distri-

bution D on [m]n is k-wise independent if, for any set A ⊆ [n] of size |A| ⩽ k, the

random variables {σ(i) : i ∈ A} are mutually independent when σ ∼ D.

59

Lemma 3.5.4 ([SSS95]). Let a1, . . . , an ∈ R+ and let m = maxi ai. Suppose that

X1, . . . , Xn ∈ {0, 1} are k-wise independent random variables with P[Xi = 1] = p.

Let X =
∑

i aiXi and µ = E[X] = p
∑

i ai. We have P[X ⩾ 2k(m+ µ)] ⩽ 2−k.

Lemma 3.5.5 ([IMZ19, Lemma 2.4]). Let X1, . . . , Xn ∈ {0, 1} be k-wise indepen-

dent random variables with P[Xi = 1] = p. Let X =
∑

iXi and µ = E[X] = np. We

have P[X ⩾ k] ⩽ µk/k!.

Shrinkage of comparator circuits under pseudorandom restrictions. We

first show the following result for comparator circuits which is analogous to [IMZ19,

Lemma 5.2] for branching programs.

Lemma 3.5.6. Let f : {0, 1}n → {0, 1} be a Boolean function, and let H ⊆ [n].

For h ∈ {0, 1}H , let ρh denote the restriction that sets the variables in H to h, and

leaves the other variables free. We have ℓ(f) ⩽ 2|H| ·
(

maxh∈{0,1}H ℓ(f↾ρh) + |H|
)
.

Proof. For h ∈ {0, 1}H , let 1h : x 7→ 1 {x = h}. Clearly, 1h can be computed by

a comparator circuit with |H| wires. Since f =
∨
h∈{0,1}H (1h ∧ f ↾ρh), the result

follows.

Lemma 3.5.7 (Reminder of Lemma 3.5.1). Let c be a constant and let f : {0, 1}n →
{0, 1}. Let ℓ := ℓ(f) and p = ℓ−2/3, and suppose that ℓ = nΩ(1). There exists a

p-regular pseudorandom selection D over n variables that is samplable using r =

poly log(ℓ) random bits such that

P
σ∼D, β∼{0,1}n

[
ℓ(f↾(σ,β)) ⩾ 23

√
c log ℓ · pℓ

]
⩽ 2 · ℓ−c.

Moreover, there exists a circuit of size poly log(ℓ) such that, given j ∈ {0, 1}logn and

a seed z ∈ {0, 1}r, the circuit computes the j-th coordinate of D(z).

Proof. First, we note that a k-wise independent random selection that can be effi-

ciently sampled and computed with the required parameters is proved to exist in

Lemma 18 of [CKLM20]. Henceforth, we let ρ be the random restriction described

by the pair (σ, β).

Let C be a comparator circuit with ℓ wires computing f . Let k = c · log ℓ.

For i ∈ [n], let wi be the number of wires in C labelled with the variable xi. Let

α =
√
c/ log ℓ. We say that i ∈ [n] is heavy if wi ⩾ p1−α · ℓ and light otherwise.

Let H ⊆ [n] be the set of heavy variables. We have |H| ⩽ (1/p)1−α. Let also

H(ρ) := H ∩ ρ−1(∗). Let ρ′ be a restriction such that ρ′(x) = ρ(x) for x /∈ H(ρ)

60

and which sets the variables in H(ρ) so as to maximize ℓ(f ↾ρ′). By Lemma 3.5.6,

we have ℓ(f↾ρ) ⩽ 2|H(ρ)|+1 · ℓ(f↾ρ′).
We now let h = ⌈3/2 · c/α⌉, and observe that

P
ρ

[
ℓ(f↾ρ) ⩾ 2h+3kp1−αs

]
⩽ P

ρ
[|H(ρ)| ⩾ h] + P

ρ

[
ℓ(f↾ρ′) ⩾ 4kp1−αℓ

]
.

Let Xi be a random variable such that Xi = 1 iff ρ(i) = ∗. From Lemma 3.5.5, it

follows that the first term can be bounded by (|H|p)h ⩽ pαh ⩽ ℓ−c. For the second

term, we can apply Lemma 3.5.4 on the light variables with µ ⩽ pℓ and m < p1−αℓ,

so that m+ µ ⩽ 2p1−αℓ, thus bounding the probability by 2−k ⩽ ℓ−c.

3.6 Learning Algorithms

Recall that a (distribution-independent) PAC learning algorithm for a class

of functions C has access to labelled examples (x, f(x)) from an unknown function

f ∈ C, where x is sampled according to some (also unknown) distribution D. The

goal of the learner is to output, with high probability over its internal randomness

and over the choice of random examples, a hypothesis h that is close to f underD. As

in [ST17], here we consider the stronger model of “randomised exact learning from

membership and equivalence queries”. It is known that learnability in this model

implies learnability in the distribution-independent PAC model with membership

queries (see [ST17, Section 2] and the references therein).

Theorem 3.6.1 ([ST17, Lemma 4.4]). Fix any partition S1, S2, . . . , Sn1−nδ of [n]

into equal-size subsets, where each Si is of size nδ and δ > 0. Let C be a class of n-

variate functions such that for each f ∈ C, there is an Si such that
∣∣∣{f↾ρ}ρ∈{0,1}[n]\Si

∣∣∣ ⩽
2n

β
, where β < 1 and moreover δ + β < 1. Then there is a randomised exact learn-

ing algorithms for C that uses membership and equivalence queries and runs in time

2n−n
δ · poly(n).

Corollary 3.6.2. For every ε > 0, there is a randomised exact learning algo-

rithms for comparator circuits with n1.5−ε wires that uses membership and equiv-

alence queries that runs in time 2n−n
Ω(ε) · poly(n).

Proof. Consider Theorem 3.6.1 and any partition S1, S2, . . . , Sn1−nδ of the n vari-

ables into equal-size subsets, each is of size nδ, where δ := ε/3. Then by an averaging

argument, for every comparator circuit C with n1.5−ε wires, there is some Si such

that after fixing the variables outside of Si, the number of wires in the restricted

circuit is at most ℓ := n1.5−ε/n1−δ ⩽ n.5−2ε/3. By Lemma 3.1.4, such a restricted

61

circuit computes some function that is equivalent to a circuit with ℓ(ℓ− 1)/2 gates,

and there are at most ℓO(ℓ2)) ⩽ 2n
1−ε/2

such circuits. Therefore we have∣∣∣{C↾ρ}ρ∈{0,1}[n]\Si

∣∣∣ ⩽ 2n
β
,

where β := 1 − ε/2 < 1 and δ + β < 1. The algorithm then follows from Theo-

rem 3.6.1.

62

Chapter 4

Constant-depth circuits vs.

monotone circuits

Abstract

In this chapter, we establish new separations between the power of monotone and

general (non-monotone) Boolean circuits:

– For every k ⩾ 1, there is a monotone function in AC0 (constant-depth poly-size

circuits) that requires monotone circuits of depth Ω(logk n). This significantly extends

a classical result of Okol’nishnikova [Oko82] and Ajtai and Gurevich [AG87]. In

addition, our separation holds for a monotone graph property, which was unknown

even in the context of AC0 versus mAC0.

– For every k ⩾ 1, there is a monotone function in AC0[⊕] (constant-depth poly-size cir-

cuits extended with parity gates) that requires monotone circuits of size exp(Ω(logk n)).

This makes progress towards a question posed by Grigni and Sipser [GS92].

These results show that constant-depth circuits can be more efficient than monotone for-

mulas and monotone circuits when computing monotone functions.

In the opposite direction, we observe that non-trivial simulations are possible in the

absence of parity gates: every monotone function computed by an AC0 circuit of size s and

depth d can be computed by a monotone circuit of size 2n−n/O(log s)d−1

. We show that the

existence of significantly faster monotone simulations would lead to breakthrough circuit

lower bounds. In particular, if every monotone function in AC0 admits a polynomial size

monotone circuit, then NC2 is not contained in NC1.

Finally, we revisit our separation result against monotone circuit size and investigate

the limits of our approach, which is based on a monotone lower bound for constraint satis-

faction problems (CSPs) established by Göös, Kamath, Robere and Sokolov [GKRS19] via

lifting techniques. Adapting results of Schaefer [Sch78] and Allender, Bauland, Immerman,

Schnoor and Vollmer [ABI+09], we obtain an unconditional classification of the monotone

63

circuit complexity of Boolean-valued CSPs via their polymorphisms. This result and the

consequences we derive from it might be of independent interest.

Organisation of the chapter

We begin with a preliminary discussion of definitions and results in Section 4.1,

passing on to our new separations between constant-depth circuits and monotone

circuits in Section 4.2. We will then discuss complexity-theoretic consequences from

monotone simulations in Section 4.3, and finally discuss CSPs in Section 4.4. De-

ferred proofs of our CSP section will be given at Section 4.5. Some appendices to

this chapter are also given: the reader is referred to Appendix B.1 for a proof of a

superpolynomial monotone circuit lower bound for 3-XOR-SAT without using lifting

theorems, and a table of clones in Appendix B.2.

4.1 Preliminaries

We review definitions, notation and results that will be used throughout the

chapter. We remark that some definitions were already given at our introductory

discussion in Sections 1.3 and 2.2. We refer the reader also to Appendix B.2, where

a table of Boolean clones and their definitions is given.

4.1.1 Notation

Boolean functions. We denote by Mono the set of all monotone Boolean functions.

We define poly =
{
n 7→ nC : C ∈ N

}
. A Boolean function f : {0, 1}(

n
2) → {0, 1} is

said to be a graph property if f(G) = f(H) for any two isomorphic graphs G and

H. Let F = {fn}n∈N be a sequence of graph properties, where fn is defined over

undirected graphs on n vertices. We say that F is preserved under homomorphisms

if, whenever there is a homomorphism from a graph G to a graph H, we have

F(G) ⩽ F(H). We denote by HomPreserving the set of all graph properties which

are preserved under homomorphisms. Note that HomPreserving ⊆ Mono.

Boolean circuits. We denote by AC0
d[s] the family of Boolean functions computed

by size-s, depth-d Boolean circuits with unbounded fan-in {∧,∨}-gates and input

literals from {x1, x1, . . . , xn, xn}. We write AC0[s] as a shorthand for
⋃∞
d=1 AC

0
d[s],

and AC0 as a shorthand of AC0[nO(1)] = AC0[poly]. We will also refer to AC0
d[poly] by

AC0
d. We write DNF[s] to denote the family of Boolean functions computed by size-s

DNFs, where size is measured by number of terms. We write CNF[s] analogously. We

64

write SIZE[s] to denote the family of Boolean functions computed by size-s circuits.

We write DEPTH[d] to denote the family of Boolean functions computed by fan-in 2

circuits of depth d. We denote by AC0[⊕] the family of Boolean functions computed

by polynomial-size AC0 circuits with unbounded fan-in ⊕-gates.

We denote by L the family of Boolean functions computed by logspace

machines, and by NL the family of Boolean functions computed by polynomial-

time nondeterministic logspace machines. Moreover, we denote by ⊕L the family

of Boolean functions computed by polynomial-time nondeterministic logspace ma-

chines with a parity acceptance condition (i.e., an input is accepted if the number

of accepting paths is odd).

Circuit complexity. Given a circuit class C, we write mC to denote the monotone

version of C. Given a function f , we write mSIZE(f) to denote the size of the smallest

monotone circuit computing f and mDEPTH(f) to denote the smallest depth of a

fan-in 2 monotone circuit computing f . Given two Boolean functions f, g, we write

f ⩽mProj
m g if there exists a many-one reduction from f to g in which each bit of the

reduction is a monotone projection1 of the input.

Miscellanea. Let α ∈ {0, 1}n . We define |α|1 :=
∑n

i=1 αi. We call |α|1 the Ham-

ming weight of α. We let supp(α) = {i ∈ [n] : αi = 1}. We let THRk,n : {0, 1}n →
{0, 1} be the Boolean function such that THRk,n(x) = 1⇐⇒ |x|1 ⩾ k.

4.1.2 Background results

The next lemma, which is proved via a standard “guess-and-verify” approach,

shows that nondeterministic logspace computations can be simulated by circuits of

size 2n
ε

and of depth d = Oε(1).

Lemma 4.1.1 (Folklore; see, e.g., [AHM+08, Lemma 8.1]). For all ε > 0, we have

NL ⊆ AC0[2n
ε
].

4.2 Constant-Depth Circuits vs. Monotone Circuits

In this section, we prove Theorems 1.3.1 and 1.3.2. For the upper bounds,

we require the logspace graph connectivity algorithm due to [Rei05] and the ⊕L
algorithm for solving linear systems over F2 due to [BDHM92], as well as the depth-

reduction techniques of [AKR+01, AHM+08]. On the lower bounds side, our proofs

1A monotone projection is a projection without negations.

65

rely on previous monotone circuit and depth lower bounds from [BGW99, GKRS19].

In order to obtain a monotone formula lower bound for a graph property, we prove

a graph padding lemma in Section 4.2.2.

4.2.1 A monotone size lower bound for a function in AC0[⊕]

In this section, we prove Theorem 1.3.2. We first recall the monotone circuit

lower bound of [GKRS19] and a depth-reduction lemma implicit in [AKR+01] and

[OSS19], whose full proof we give below for completeness. We remark that similar

arguments can be employed to prove Lemma 4.1.1, essentially by replacing the ⊕
gates by ∨ gates.

As explained in Section 2.2, in its strongest form the separation result from

[GKRS19] can be stated as follows.

Theorem 4.2.1 ([GKRS19]). There exists ε > 0 such that ⊕L∩Mono ̸⊆ mSIZE[2o(n
ε)].

Moreover, this separation is witnessed by 3-XOR-SAT.

Lemma 4.2.2 (Folklore; see, e.g., [AKR+01, OSS19]). Let f : {0, 1}n → {0, 1} be

a Boolean function computed by a ⊕L machine. For every δ > 0, there exists an

AC0[⊕] circuit of size 2n
δ
that computes f .

Proof. Let M be a ⊕L-machine computing f . Without loss of generality, we may

assume that each configuration in the configuration graph G of M is time-stamped

– in other words, each configuration carries the information of the number of com-

putational steps it takes to arrive at it.2 We may also assume that every accepting

computation takes exactly the same amount of time, which means that every path

from the starting configuration vstart to the accepting configuration vaccept has the

same length in the configuration graph. These assumptions imply that the configu-

ration graph is layered (because a configuration with time-stamp t can only point to

configurations with time-stamp t + 1) and acyclic. Note that, for a fixed machine,

the configuration graph can be computed from the input string using a projection.

Let m = nO(1) be the time that an accepting computation takes. We now

show how to count (modulo 2) the number of accepting paths from vstart to vaccept

with a depth-d AC0[⊕] circuit. First, choose m1/d− 1 configurations v1, . . . , vm1/d−1
(henceforth called “checkpoints”) from V (G), such that the configuration vi is at

the level i ·m1−1/d in the configuration graph (i.e., it takes i ·m1−1/d time steps to

2Formally, we can define a ⊕L-machine M ′ such that the configurations of M ′ are (C, t), where
C is a configuration of M , and t = 0, 1, . . . ,m = nO(1) is a number denoting the time in which the
configuration was achieved. A configuration (C, t) can only reach a configuration (C′, t+ 1) in the
configuration graph of M ′.

66

arrive at vi). For convenience, we let v0 = vstart and vm1/d = vaccept. We then count

the number of paths from from vstart to vaccept that go through v1, . . . , vm1/d−1,

and sum over all possible choices of the checkpoints. Since the graph is layered

and each path from v0 to vm1/d has length exactly m, there is only one choice

of checkpoints that witnesses a given path from v0 to vm1/d , so no path is counted

twice in this summation. Letting #paths(s, t, ℓ) denote the number of paths between

configurations s and t with distance exactly ℓ, we obtain

#paths(v0, vm1/d ,m) =
∑

v1,...,vm1/d−1

m1/d−1∏
i=0

#paths(vi, vi+1,m
1−1/d).

The above calculation can be done in modulo 2 with an unbounded fan-in XOR

gate (replacing the summation) and an unbounded fan-in AND gate (replacing the

product). Note that the formula above is recursive. Repeating the same computa-

tion for calculating (modulo 2) the expression #paths(vi, vi+1,m
1−1/d) for each i,

we obtain a depth-2d AC0[⊕] circuit for calculating the number of paths from vstart

to vaccept (modulo 2). Clearly, the total size of the circuit is 2O(m1/d·logm), which is

smaller than 2n
δ

for a large enough constant d.

We now restate Theorem 1.3.2 and prove it by combining Theorem 4.2.1

and Lemma 4.2.2 with a padding trick.

Theorem 1.3.2 (Polynomial-size constant-depth vs. larger monotone size). For

every k ⩾ 1, we have AC0[⊕] ∩Mono ̸⊆ mSIZE[2(logn)
k
].

Proof. By Theorem 4.2.1, there exists ε > 0 and a monotone function f ∈ ⊕L such

that any monotone circuit computing f has size 2Ω(nε).

Let δ = ε/k and let m = 2n
δ
. Let g : {0, 1}n × {0, 1}m → {0, 1} be the

Boolean function defined as g(x, y) = f(x). Note that g is a function on N :=

m+n = 2Θ(nδ) bits. By Lemma 4.2.2, there exists an AC0[⊕] circuit computing f of

size 2n
δ

= NO(1). The same circuit computes g. On the other hand, any monotone

circuit computing g has size 2Ω(nε) = 2Ω((logN)ε/δ) = 2Ω((logN)k).

Remark 4.2.3 (About a separation with an AC0[q] upper bound). The argument

above gives a monotone Boolean function in AC0[⊕] with superpolynomial monotone

circuit complexity, but there is nothing particular about the field F2 compared to Fq
for other primes q. We now sketch how to obtain a monotone Boolean function

computable by AC0 circuits augmented with unbounded fan-in MODq gates
3 with the

same lower bound as that of Theorem 1.3.2.

3We define MODq : {0, 1}n → {0, 1} as MODq(x) = 1 ⇐⇒
∑

i∈[n] xi = 0 (mod q).

67

The paper [GKRS19] shows that there exists a monotone Boolean function f

computable by monotone span programs over Fq whose monotone circuit complexity

is 2n
Ω(1)

. One can again use the equivalence between span programs over Fq and

MODqL machines [KW93] to obtain a MODqL machine computing f4, and the same

argument employed in Lemma 4.2.2 allows us to obtain an AC0 circuit with MODq

gates of size 2n
ε
for any desired constant ε > 0.

4.2.2 A monotone depth lower bound for a graph property in AC0

In this section, we prove Theorem 1.3.1. We prove moreover that the function

that separates AC0∩Mono and mNCi can be taken to be a graph property. We state

our result in its full generality below.

Theorem 4.2.4. We have AC0 ∩Mono ∩ GraphProperties ̸⊆ mDEPTH[(log n)i], for

every i ⩾ 1. In particular, we have AC0 ∩Mono ∩ GraphProperties ̸⊆ mNCi.

First, we recall a result of [BGW99], which proves monotone lower bounds for

the following function. Let OddFactorn : {0, 1}(
n
2) → {0, 1} be the function that ac-

cepts a given graph if it contains an odd factor – in other words, a spanning subgraph

in which the degree of every vertex is odd. Babai, Gál and Wigderson [BGW99]

proved the following result:

Theorem 4.2.5 ([BGW99]). Any monotone formula computing OddFactorn has

size 2Ω(n), and any monotone circuit computing OddFactorn has size nΩ(logn).

The proof in [BGW99] is actually for the case of bipartite graphs, but it easily

extends to general graphs, since the bipartite case reduces to the general case by

a monotone projection. The formula lower bound stated above is slightly stronger

because it makes use of asymptotically optimal lower bounds on the randomized

communication complexity of DISJn [KS92], which were not available to [BGW99].

We remark that, with a different language, a monotone circuit lower bound for

OddFactor is also implicitly proved in Feder and Vardi [FV98, Theorem 30].

We now recall an upper bound for OddFactor, implicitly proved in an unpub-

lished note due to Johannsen [Joh03].

Theorem 4.2.6 ([Joh03]). We have OddFactor ∈ L.

4The complexity class MODqL is studied in [BDHM92], and their equivalence to span programs
is stated in [KW93]. A MODqL machine is a nondeterministic machine just like a ⊕L machine, but
instead of accepting if the number of accepting paths is odd, it accepts if the number of accepting
paths is different from 0 (mod q).

68

Proof. We first recall the following observation about the OddFactor function, which

appears in different forms in the literature (see [Urq87, Lemma 4.1] or [Juk12,

Lemma 18.16]; see also [Joh03, Proposition 1] for a different proof.)

Claim. A graph G has an odd factor if and only if every connected component of

G has an even number of vertices.

Proof. If a graph G has an odd factor, we can conclude that every connected com-

ponent of G has an even number of vertices from the well-known observation that

in every graph there is an even number of vertices of odd degree.

Now suppose that every connected component of G has an even number of

vertices. We will iteratively construct an odd factor F of G. We begin with the

empty graph. We take any two vertices u, v in the same connected component of

G which currently have even degree in F , and consider any path P = (x1, . . . , xk)

between u and v, where x1 = u and xk = v. If the edge xixi+1 is currently in F , we

remove xixi+1 from F ; otherwise, we add xixi+1 to F . It’s easy to check that, in

every iteration of this procedure, only the vertices u and v have the parity of their

degree changed in F ; the degree of every other vertex stays the same (modulo 2).

Since every connected component has an even number of vertices, this means that,

eventually, every vertex in F will have odd degree.

Now it’s easy to check in logspace if every connected component of G has

an even number of vertices using Reingold’s algorithm for undirected connectiv-

ity [Rei05]. It suffices to check if, for every vertex v of G, the number of vertices

reachable from v is odd.

Now, if we only desire to obtain a function in AC0 not computed by monotone

circuits of depth (log n)i, we can follow the same argument of Theorem 1.3.2, using

Lemma 4.1.1 instead of Lemma 4.2.2. In order to obtain moreover a monotone

graph property witnessing this separation, we will need the following lemma, which

enables us to obtain a graph property after “padding” a graph property. We defer

the proof of this lemma to the end of this section.

Lemma 4.2.7. Let f : {0, 1}(
n
2) → {0, 1} be a monotone graph property on graphs

of n vertices. The following holds.

1. If f ∈ NCi for some i > 1, then there exists a monotone graph property g on

graphs of N = 2(logn)
i
vertices such that g ∈ NC1 and f ⩽mProj

m g.

69

2. If f ∈ NL, then for all ε > 0 there exists a monotone graph property g on

graphs of N = 2n
ε
vertices such that g can be computed by AC0 circuits of size

N2+o(1) and f ⩽mProj
m g.

3. If f ∈ ⊕L, then for all ε > 0 there exists a monotone graph property g on

graphs of N = 2n
ε
vertices such that g can be computed by AC0[⊕] circuits of

size N2+o(1) and f ⩽mProj
m g.

We are now ready to prove Theorem 4.2.4.

Proof of Theorem 4.2.4. Fix n ∈ N and take an ε < 1/i. Observing that L ⊆
NL, from Theorem 4.2.6 and item (2) of Lemma 4.2.7 we conclude that there ex-

ists a monotone graph property f on N = 2n
ε

vertices such that f ∈ AC0 and

OddFactorn ⩽mProj
m f . By Theorem 4.2.5, any monotone circuit computing f has

depth Ω(n) = Ω((logN)1/ε)≫ (logN)i.

Raz and Wigderson [RW92] observed that there exists a monotone function

f ∈ NC1\mNC. Using Lemma 4.2.7, we observe moreover that it’s possible to obtain

this separation with a monotone graph property.

Proposition 4.2.8. We have NC1 ∩Mono ∩ GraphProperties ̸⊆ mNC.

Proof. Observing that L ⊆ NC2, we conclude from Theorem 4.2.6 and item (1) of

Lemma 4.2.7 that there exists a monotone graph property f on N = 2(logn)
2

vertices

such that f ∈ NC1 and OddFactorn ⩽mProj
m f . By Theorem 4.2.5, any monotone

circuit computing f has depth Ω(n) = Ω(2
√
logN), which implies f ̸∈ mNC.

4.2.3 Efficient monotone padding for graph properties

We will now prove Lemma 4.2.7. We first recall some low-depth circuits for

computing threshold functions, which we will use to design a circuit for efficiently

computing the adjacency matrix of induced subgraphs.

Theorem 4.2.9 ([HWWY94]). Let d > 0 be a constant. The function THR(logn)d,n

can be computed by an AC0 circuit of size no(1) and depth d+O(1).

Theorem 4.2.10 ([AKS83]). For every k ∈ [n], the function THRk,n can be com-

puted by a circuit of depth O(log n) and size nO(1).

Lemma 4.2.11. There exists a circuit Ckn with
(
n
2

)
+ n inputs and

(
k
2

)
outputs

which, when given as input an adjacency matrix of a graph G on n vertices and

a characteristic vector of a set S ⊆ [n] such that |S| ⩽ k, outputs the adjacency

70

matrix of the graph G[S], padded with isolated vertices when |S| < k. The circuit

has constant-depth and size n2+o(1) when k = poly log(n), and size nO(1) and depth

O(log n) otherwise.

Proof. Let {xij}i,j∈[n] encode the adjacency matrix of G. Let α ∈ {0, 1}n be the

characteristic vector of S. Let i, j ∈ [k]. Note that {i, j} ∈ E(G[S]) if and only if

there exists a, b ∈ [n] such that

• αa is the i-th non-zero entry of α,

• αb is the j-th non-zero entry of α, and

• xab = 1 (i.e., a and b are connected in G).

We first consider the case k = poly log(n). In this case, the first two conditions

can be checked with circuits of size no(1) using Theorem 4.2.9. Therefore, we can

compute if i and j are adjacent using n2+o(1) gates and constant depth. As there

are at most (log n)O(1) such pairs, we can output G[S] with at most n2+o(1) gates.

For any k, the first two conditions can be checked with an NC1 circuit by

Theorem 4.2.10. Since there are at most n2 pairs i, j, the entire adjacency matrix

can be computed with a O(log n)-depth and polynomial-size circuit.

We are ready to prove Lemma 4.2.7.

Proof of Lemma 4.2.7. We first prove (1). Fix n ∈ N and let N = 2(logn)
i
. For a

graph G on N vertices such that |E(G)| ⩽
(
n
2

)
, let Gclean be the graph obtained from

G by removing isolated vertices from G one-by-one, in lexicographic order, until one

of the following two conditions are satisfied: (1) there are no more isolated vertices

in Gclean, or (2) Gclean has exactly n vertices. Let g : {0, 1}(
N
2) → {0, 1} be the

monotone graph property defined as follows:

g(G) :=

(
|E(G)| >

(
n

2

))
∨ (|V (Gclean)| > n) ∨ (f(Gclean) = 1).

Note that g accepts a graph G if and only if at least one of the following three

conditions are satisfied:

1. G has at most
(
n
2

)
edges, Gclean has exactly n vertices and f(Gclean) = 1, or

2. G has more than
(
n
2

)
edges, or

3. Gclean has more than n vertices.

71

We observe that the monotonicity of g follows from the monotonicity of f . We

also claim that g is a graph property. Indeed, the graph Gclean is the same (up to

isomorphism), irrespective of the order according to which the isolated vertices are

removed from G. Moreover, the function f is also a graph property. Because of this,

all the three conditions above are preserved under isomorphisms.

We first observe that f is a monotone projection of g. Indeed, given a graph

G on n vertices, we can easily construct by a monotone projection a graph G′ on

N vertices and at most
(
n
2

)
edges such that f(G) = g(G′). We just let G′ have

a planted copy of G, and all other vertices are isolated. Then G′clean = G (up to

isomorphism) and g(G′) = f(Gclean) = f(G).

We now show how to compute g in NC1. Let {xij}i,j∈[N] be the input bits

of g, corresponding to the adjacency matrix of a graph G. The circuit computes as

follows.

1. If |E(G)| >
(
n
2

)
, accept the graph G.

2. Compute the characteristic vector α ∈ {0, 1}N of the set of all non-isolated

vertices of G. If |α|1 > n, accept the graph G.

3. Compute Gclean and output f(Gclean).

Note that checking if |E(G)| >
(
n
2

)
can be done in NC1 by Theorem 4.2.10.

Moreover, for all i ∈ [N], we have αi =
∨
j∈[N] xij , and therefore αi can be computed

by a circuit of depth O(logN) and O(N) gates. In total, the vector α can be

computed with O(N2) gates and O(logN) depth. Finally, we can check if |α|1 > n

in NC1 with a threshold circuit.

For the final step, we compute Gclean. If |α|1 = n, note that Gclean =

G[supp(α)]. When |α|1 < n, then Gclean is G[supp(α)] padded with isolated vertices.

We can therefore compute Gclean with the circuit CnN of Lemma 4.2.11. Moreover,

since f ∈ NCi, we have that f can be computed by a circuit of size nO(1) = No(1)

and depth O((log n)i) = O(logN). Therefore, computing f(Gclean) can be done in

NC1. Overall, we get that g ∈ NC1.

In order to prove (2), it suffices to modify the proof above. The modification

can be briefly described as follows. We let N = 2n
ε
. Every time Lemma 4.2.11 is

applied, we use the AC0 circuit instead of the NC1 circuit, since n = poly log(N).

This ammounts to N2+o(1) many gates with unbounded fan-in. Moreover, since by

assumption f ∈ NL, applying Lemma 4.1.1 we obtain an AC0 circuit for f of size

2n
ε/2

= No(1), so we can compute f(Gclean) in constant depth with No(1) gates.

72

Finally, for (3) it suffices to apply the same argument used for (2), replacing

an application of Lemma 4.1.1 by an application of Lemma 4.2.2.

4.3 Non-Trivial Monotone Simulations and Their Con-

sequences

In contrast to Section 4.2, in this section we observe that a non-trivial sim-

ulation of AC0 circuits by monotone circuits is possible. This follows from a refined

version of the switching lemma proved by Rossman [Ros17a]. As a proof of concept,

we use this simulation result to reprove a well-known AC0 lower bound for Majority.

In the second part of this section, we show that if much faster simulations

are possible, then even stronger non-monotone circuit lower bounds follow. We

also show that this implication is true even if the simulation only holds for graph

properties. Monotone simulations for graph properties are motivated by a result of

Rossman [Ros08a], which shows that very strong monotone simulations are possible

for homomorphism-preserving graph properties. The lower bounds from monotone

simulations are proved with the simulation result and padding argument used in the

previous section (Lemmas 4.1.1 and 4.2.7).

4.3.1 A non-trivial simulation for bounded-depth circuits

The earliest monotone simulation result was proved for DNFs by Quine [Qui53].

Theorem 4.3.1 (Quine [Qui53]). For all s : N → N, we have DNF[s] ∩ Mono ⊆
mDNF[s].

Proof. If a given DNF computes a monotone Boolean function, simply removing the

negative literals continues to compute the same function.

Let DTsize(f) denote the size of a smallest decision-tree computing f . We

will need a result obtained by Rossman [Ros17a].

Theorem 4.3.2 ([Ros17a]). If f : {0, 1}n → {0, 1} is computable by an AC0 circuit

of depth d and size s, then DTsize(f) = 2(1−1/O(log s)d−1)n.

Theorem 4.3.3. Let s : N → N and d ⩾ 1. We have AC0
d[s] ∩Mono ⊆ mSIZE[t],

where t = n ·2n(1−1/O(log s)d−1). Moreover, this upper bound is achieved by monotone

DNFs of size t/n.

Proof. Let f be a monotone function computable by an AC0 circuit of depth d

and size s. By Theorem 4.3.2, there exists a decision tree of size 2(1−1/O(log s)d−1)n

73

computing f . Therefore, there exists a DNF of the same size computing f , which

can be taken to be monotone by by Theorem 4.3.1. This can be converted into a

monotone circuit of size n · 2(1−1/O(log s)d−1)n.

We observe that it is possible to immediately deduce an AC0 lower bound

for Majority using this simulation theorem. Even though near-optimal lower bounds

for Majority have been known for a long time [H̊as86] and the proof of the main

technical tool (Theorem 4.3.2) behind our simulation result is similar to the one

used by [H̊as86], the argument below illustrates how a monotone simulation can

lead to non-monotone circuit lower bounds.

Corollary 4.3.4. Any depth-d AC0 circuit computing Majority must have size at

least 2Ω((n/ logn)1/(d−1)).

Proof. Note that Majority has
(
n
n/2

)
= Ω(2n/

√
n) minterms. Therefore, any mono-

tone DNF computing Majority has size at least Ω(2n/
√
n). By Theorem 4.3.3, it

follows that the size s of a depth-d AC0 computing Majority satisfies the following

inequality:

2n(1−1/O(log s)d−1) = Ω(2n−
1
2
logn).

From this equation we obtain s = 2Ω((n/ logn)1/(d−1)).

4.3.2 Non-monotone lower bounds from monotone simulations

We now show that if monotone circuits are able to efficiently simulate non-

monotone circuits computing monotone Boolean functions, then striking complexity

separations follow. We also show a result of this kind for simulations of graph

properties. We first prove a lemma connecting the simulation of AC0 circuits with

the simulation of NL machines.

Lemma 4.3.5. For all constants ε > 0 and C ⩾ 1, if AC0∩Mono ⊆ mSIZE[2O((logn)C)],

then NL ∩Mono ⊆ mSIZE[2o(n
ε)].

Proof. We prove the contrapositive. Suppose that there exists ε > 0 such that

NL ∩ Mono ̸⊆ mSIZE[2o(n
ε)]. This means that there exists a monotone function f

such that f ∈ NL and any monotone circuit computing f has size 2Ω(nε).

Let δ = ε/(2C) and let m = 2n
δ
. Let g : {0, 1}n × {0, 1}m → {0, 1} be

the Boolean function defined as g(x, y) = f(x). Note that g is a function on N :=

m + n = 2Θ(nδ) bits. By Lemma 4.1.1, there exists an AC0 circuit computing f of

size 2n
δ

= NO(1). Moreover, any monotone circuit computing g has size 2Ω(nε) =

2Ω((logN)ε/δ) = 2Ω((logN)2C).

74

Next, we recall the strongest known monotone circuit and formula lower

bounds for a monotone function in NP.

Theorem 4.3.6 ([PR17]). NP ∩Mono ̸⊆ mDEPTH[o(n)].

Theorem 4.3.7 ([CKR20]). NP ∩Mono ̸⊆ mSIZE[2o(
√
n/ logn)].

We are now ready to state and prove our first result regarding new complexity

separations from monotone simulations. Recall that obtaining explicit lower bounds

against depth-3 AC0 circuits of size 2ω(n
1/2) is a major challenge in circuit complexity

theory, while the best lower bound on the size of depth-4 AC0 circuits computing a

function in NP is currently 2Ω(n1/3) [H̊as86]. Moreover, no strict separation is known

in the following sequence of inclusions of complexity classes: ACC ⊆ TC0 ⊆ NC1 ⊆
L ⊆ NL ⊆ ⊕L ⊆ NC2. We show that efficient monotone simulations would bring

new results in both of these fronts. (We stress that all lower bound consequences

appearing below refer to separations against non-uniform circuits.)5

Theorem 4.3.8. Let C be a class of circuits. There exists ε > 0 such that the

following holds:

1. If AC0
3 ∩Mono ⊆ mNC1, then NP ̸⊆ AC0

3[2
o(n)].

2. If AC0
4 ∩Mono ⊆ mSIZE[poly], then NP ̸⊆ AC0

4[2
o(
√
n/ logn)].

3. If C ∩Mono ⊆ mSIZE[2O(nε)], then NC2 ̸⊆ C.

4. If AC0 ∩Mono ⊆ mSIZE[poly], then NC2 ̸⊆ NC1.

Proof. We will prove each item separately.

Proof of (1). Let us assume that AC0
3 ∩ Mono ⊆ mNC1. Let f be the function of

Theorem 4.3.6. For a contradiction, suppose that f ∈ AC0
3[2

o(n)]. Let

α : N→ N be such that α(n)→n ∞ and f has a depth-3 AC0 circuit of

size 2n/α. Letm = 2n/(10·α) and let g : {0, 1}n×{0, 1}m → {0, 1} be the

function g(x, y) = f(x). Let N = n+m = (1 + o(1))2n/(10·α). Clearly,

the function g has a depth-3 AC0 circuit of size 2n/α = NO(1). Since

g is monotone, we conclude from the assumption that g is computed

by a polynomial-size monotone formula. Now, since f(x) = g(x, 1m),

we obtain a monotone formula of size NO(1) = 2o(n) for computing f ,

which contradicts the lower bound of Theorem 4.3.6.

5In other words, all upper bounds are uniform, but the lower bounds hold even for non-uniform
circuits. Note that this is stronger than lower bounds for uniform circuits.

75

Proof of (2). Similar to the proof of item (1), but using Theorem 4.3.7 instead.

Proof of (3). Suppose that NC2 ⊆ C. By Theorem 4.2.1, there exists a monotone

function f ∈ NC2 on n bits and a number ε > 0 such that f /∈
mSIZE[2o(n

ε)]. Therefore, for any δ > 0 such that δ < ε, we have

f /∈ mSIZE[2O(nδ)]. Since, by assumption, we have f ∈ NC2 ⊆ C, we

obtain C ∩Mono ̸⊆ mSIZE[2O(nδ)].

Proof of (4). If NC2 ⊆ NC1, then, by item (3), we get NC1 ∩Mono ̸⊆ mSIZE[2o(n
ε)].

From Lemma 4.3.5, we obtain AC0 ∩Mono ̸⊆ mSIZE[poly].

As a motivation to the ensuing discussion, we recall a result of Rossman,

who showed that any homomorphism-preserving graph property computed by AC0

circuits is also computed by monotone AC0 circuits [Ros08a].

Theorem 4.3.9 ([Ros08a]). AC0 ∩ HomPreserving ⊆ mDNF[poly].

This inspires the question of whether general graph properties can also be

efficiently simulated by monotone circuits. We show that, if true, such simulations

would imply strong complexity separations. Let us first recall an exponential mono-

tone circuit lower bound for monotone graph properties, and we will be ready to

state and prove our main result.

Theorem 4.3.10 ([AB87]). There exists ε > 0 such that NP∩Mono∩GraphProperties ̸⊆
mSIZE[2o(n

ε)].

Theorem 4.3.11. Let C be a class of circuits. The following holds:

1. If C ∩Mono ∩ GraphProperties ⊆ mSIZE[poly], then L ̸⊆ C.

2. If C∩Mono∩GraphProperties ⊆ mDEPTH[o(
√
n)], where n denotes the number

of input bits, then L ̸⊆ C.

3. If AC0 ∩Mono ∩ GraphProperties ⊆ mSIZE[poly], then NP ̸⊆ NC1.

Proof. We will prove each item separately.

Proof of (1). Suppose that L ⊆ C. By Theorem 4.2.5, the monotone graph property

OddFactor satisfies OddFactor /∈ mSIZE[poly]. Moreover, we have the

upper bound OddFactor ∈ L by Theorem 4.2.6. Since, by assumption,

we have OddFactor ∈ L ⊆ C, we obtain C ∩Mono ∩ GraphProperties ̸⊆
mSIZE[poly].

76

Proof of (2). Suppose that L ⊆ C. By Theorems 4.2.5 and 4.2.6, there exists a mono-

tone graph property f ∈ L such that f /∈ mDEPTH[o(
√
n)]. Since, by

assumption, we have f ∈ L ⊆ C, we obtain C∩Mono∩GraphProperties ̸⊆
mDEPTH[o(

√
n)].

Proof of (3). Suppose that NP ⊆ NC1. By Theorem 4.3.10, there exists a monotone

graph property f ∈ NC1 such that mSIZE(f) = 2Ω(nε) for some ε > 0.

Let δ = ε/2. By Lemma 4.2.7 (Item 2), there exists a monotone

graph property g on N = 2n
δ

vertices computed by an AC0 circuit

of size N2+o(1) such that f is a monotone projection of g. Theo-

rem 4.3.10 implies that any monotone circuit computing f has size

2Ω(nε) = 2Ω((logN)2) = Nω(1).

4.4 Monotone Complexity of Constraint Satisfaction Prob-

lems

In this section, we study the monotone complexity of Boolean-valued CSPs.

Our goal is to classify which types of Boolean CSPs are hard for monotone circuit

size and monotone circuit depth, eventually proving Theorems 1.3.4 and 1.3.5.

We will first spend some time recalling standard definitions and concepts in

the theory of CSPs (Section 4.4.1), as well as a few results about CSPs that were

proved in previous works [Sch78, Jea98, BCRV03, BCRV04, ABI+09] (Section 4.4.2).

We will then prove Theorem 1.3.5 in Section 4.4.3, and we will finally prove Theo-

rem 1.3.4 in Section 4.4.5 after proving some auxiliary results in Section 4.4.4.

4.4.1 Definitions

For a good introduction to the concepts defined below, we refer the reader

to [BCRV03, BCRV04]. We also refer the reader to Section 1.3.3 for the definition

of the family of functions CSP-SATS , as well as the terms constraint application,

S-formula and satisfiable formula.

We denote by pni : {0, 1}n → {0, 1} the i-th projection function on n variables,

whose operation is defined as pni (x) = xi. For a set of Boolean functions B, we

denote by [B] the closure of B, defined as follows: a Boolean function f is in [B]

if and only if f ∈ B ∪ {Identity} or if there exists g ∈ B and h1, . . . , hk such that

f = g(h1, . . . , hk), where each hi is either a projection function or a function from

[B]. We can equivalently define [B] as the set of all Boolean functions that can be

computed by circuits using the functions of B as gates. Note that [B] necessarily

77

contains an infinite number of Boolean functions, since pn1 ∈ [B] for every n ∈ N;

moreover, the constant functions are not necessarily in [B]. We say that B is a clone

if B = [B]. A few prominent examples of clones are the set of all Boolean functions

(equal to [{∧,¬}]), monotone functions (equal to [{∧,∨, 0, 1}]), and linear functions

(equal to [{⊕, 1}]).

Remark 4.4.1. The set of all clones forms a lattice, known as Post’s lattice, under

the operations [A]⊓ [B] := [A]∩ [B] and [A]⊔ [B] := [A∪B]. From the next section

onwards, we will refer to the clones defined in [BCRV03] (such as I0, I1, etc.),

assuming the reader is familiar with them. For the unfamiliar reader, we refer to

Appendix B.2 and Table B.2 and Fig. 4.1, which contain all the definitions of the

clones we will need, as well as the entire Post’s lattice in graphical representation.

To avoid confusion, we will always refer to clones with normal-Roman font

(e.g., S1, I0, etc).

Let S be a finite set of Boolean relations. We denote by CNF(S) the set of all

S-formulas. We denote by COQ(S) the set of all relations which can be expressed

with the following type of formula φ:

φ(x1, . . . , xk) = ∃y1, . . . , yℓ ψ(x1, . . . , xk, y1, . . . , yℓ),

where ψ ∈ CNF(S). The relations in COQ(S) will also be referred as conjunctive

queries over S. We denote by ⟨S⟩ the set of relations defined as ⟨S⟩ := COQ(S∪{=}).
If S = ⟨S⟩, we say that S is a co-clone. We define

CSP = {CSP-SATS : S is a finite set of relations} .

We say that CSP-SATS is trivial if CSP-SATS is a constant function.

Let R be a k-ary Boolean relation and let f : {0, 1}ℓ → {0, 1} be a Boolean

function. For x ∈ R and i ∈ [k], we denote by x[i] the i-th bit of x.

Definition 4.4.2. We say that f is a polymorphism of R, and R is an invariant

of f , if, for all x1, . . . , xℓ ∈ R, we have

(f(x1[1], . . . , xℓ[1]), f(x2[2], . . . , xℓ[2]), . . . , f(xk[k], . . . , xℓ[k])) ∈ R.

We denote the set of all polymorphisms of R by Pol(R). For a set of relations S,

we denote by Pol(S) the set of Boolean functions which are polymorphisms of all

the relations of S. For a set of Boolean functions, we denote by Inv(B) the set of

all Boolean relations which are invariant under all functions of B (i.e., Inv(B) =

78

{R : B ⊆ Pol(R)}).

The following summarises the important facts about clones, co-clones and

polymorphisms that are relevant to the study of CSPs [JCG97].

Lemma 4.4.3. Let S and S′ be sets of Boolean relations and let B and B′ be sets

of Boolean functions. We have

(i) Pol(S) is a clone and Inv(B) is a co-clone;

(ii) If S ⊆ S′, then Pol(S′) ⊆ Pol(S);

(iii) If B ⊆ B′, then Inv(B′) ⊆ Inv(B);

(iv) COQ(COQ(S)) = COQ(S);

(v) If S ⊆ S′, then COQ(S) ⊆ COQ(S′);

(vi) Inv(Pol(S)) = ⟨S⟩;

(vii) Pol(Inv(B)) = [B].

We now define different types of reductions. We say that a reduction is a

monotone OR-reduction if every bit of the reduction is either constant or can be

computed by a monotone disjunction on the input variables. We write f ⩽mOR
m g if

there exists a many-one monotone OR-reduction from f to g. We also write f ⩽AC0

m g

if there exists a many-one AC0 reduction from f to g, and f ⩽mNL
m g if there exists a

many-one mNL reduction from f to g6. Unless otherwise specified, every reduction

we consider will generate an instance of polynomial size on the length of the input.

Finally, we denote by ORk and NANDk the k-ary OR and NAND relations,

respectively.

4.4.2 Basic facts about CSP-SAT

We state here basic facts about the CSP-SAT function. These facts are proved

in the original paper of Schaefer [Sch78], as well as in later papers [Jea98, BCRV03,

BCRV04, ABI+09].

6A many-one AC0 (resp. mNL) reduction is one in which each bit of the reduction is either
constant or can be computed with a polynomial-size AC0 circuit (resp. monotone nondeterministic
branching program). Recall that a monotone nondeterministic branching program is a directed
acyclic graph G with two distinguished vertices s and t, in which each edge e is labelled with an
input function ρe ∈ {1, x1, . . . , xn}. Given an input x, the program accepts if there exists a path
from s to t in the subgraph Gx of G in which an edge e appears if ρe(x) = 1.

79

Lemma 4.4.4 below is one of the most important lemmas of this section and

will be used many times. It states that Pol(S) characterises the monotone complexity

of CSP-SATS , in the sense that the sets of relations with few polymorphisms give

rise to the hardest instances of CSPs. A non-monotone version of this result was

proved in [Jea98, BCRV04, Theorem 2.4], and we check in Section 4.5.2 that their

proofs also hold in the monotone case.

Lemma 4.4.4 (Polymorphisms characterise the complexity of CSPs [Jea98, BCRV04,

Theorem 2.4]). If Pol(S2) ⊆ Pol(S1), then CSP-SATnS1
⩽mNL
m CSP-SAT

poly(n)
S2

.

Theorem 4.4.5 gives monotone circuit upper bounds for some instances of

CSP-SATS . Non-monotone variants of this upper bound were originally obtained

in the seminal paper of Schaefer [Sch78], and we again check that the monotone

variants work in Section 4.5.3.

Theorem 4.4.5 (Monotone version of the upper bounds for CSP-SAT [Sch78,

ABI+09]). Let S be a finite set of relations. The following holds.

1. If E2 ⊆ Pol(S) or V2 ⊆ Pol(S), then CSP-SATS ∈ mSIZE[poly].

2. If D2 ⊆ Pol(S), or S00 ⊆ Pol(S), or S10 ⊆ Pol(S), then CSP-SATS ∈ mNL.

We now recall the definitions of a few well-known CSPs. We define 3-Horn-SATn :

{0, 1}2n
3+n → {0, 1} as

3-Horn-SATn = CSP-SATnH3 , where

H3 = {(¬x1 ∨ ¬x2 ∨ x3), (¬x1 ∨ ¬x2 ∨ ¬x3), (x)} .

Let also 3-AntiHorn-SAT = CSP-SATA3 , where

A3 = {(x1 ∨ x2 ∨ ¬x3), (x1 ∨ x2 ∨ x3), (¬x)} .

Finally, let 2-SAT = CSP-SATΓ, where Γ = {(x1 ∨ x2), (x1 ∨ ¬x2), (¬x1 ∨ ¬x2)}.
We now observe that the set of polymorphisms of a given set of relations S contains

E2, V2, or D2 if, and only if, the relations in S can be described by a H3-formula

(also known as Horn formula), A3-formula (also known as anti-Horn formula), or

Γ-formula (also known as bijunctive formula) – respectively.

Lemma 4.4.6 ([CKS01, Lemmas 4.8 and 4.9]). Let S be a finite set of relations.

The following holds.

1. E2 ⊆ Pol(S)⇐⇒ S ⊆ COQ(H3);

80

2. V2 ⊆ Pol(S)⇐⇒ S ⊆ COQ(A3);

3. D2 ⊆ Pol(S)⇐⇒ S ⊆ COQ(Γ).

Finally, we state here a result of [ABI+09], which classifies the non-monotone

complexity of CSP-SATS under ⩽AC0

m reductions. The classification of the complexity

of CSP-SATS is based solely on Pol(S). See Figure 4.1 for a graphical representation.

Theorem 4.4.7 (Refined classification of CSP problems [ABI+09, Theorem 3.1]).

Let S be a finite set of Boolean relations. The following holds.

• If I0 ⊆ Pol(S) or I1 ⊆ Pol(S), then CSP-SATS is trivial.

• If Pol(S) ∈ {I2,N2}, then CSP-SATS is ⩽AC0

m -complete for NP.

• If Pol(S) ∈ {V2,E2}, then CSP-SATS is ⩽AC0

m -complete for P.

• If Pol(S) ∈ {L2,L3}, then CSP-SATS is ⩽AC0

m -complete for ⊕L.

• If S00 ⊆ Pol(S) ⊆ S00
2 or S10 ⊆ Pol(S) ⊆ S10

2 or Pol(S) ∈ {D2,M2}, then
CSP-SATS is ⩽AC0

m -complete for NL.

• If Pol(S) ∈ {D1,D}, then CSP-SATS is ⩽AC0

m -complete for L.

• If S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, then either CSP-SATS ∈ AC0 or

CSP-SATS is ⩽AC0

m -complete for L.

4.4.3 A monotone dichotomy for CSP-SAT

In this section, we prove Theorem 1.3.5. We first prove Part (1) of the

theorem (the dichotomy for circuit size), and then we prove Part (2) of the theorem

(the dichotomy for circuit depth).

Dichotomy for circuits. To prove the dichotomy for circuits, we first show that,

for any set of relations S whose set of polymorphisms is contained in L3, we can

monotonically reduce 3-XOR-SAT to CSP-SATS .

Lemma 4.4.8. Let S be a finite set of relations. If Pol(S) ⊆ L3, then we get

3-XOR-SAT ⩽mNL
m CSP-SATS.

Proof. Inspecting Post’s lattice (Figure 4.1), note that the only clones strictly con-

tained in L3 are L2,N2 and I2. We will first show that the reduction holds for the case

Pol(S) = L2 and then prove that the reduction also holds for the case Pol(S) = L3.

Lemma 4.4.4 will then imply the cases Pol(S) ∈ {N2, I2}, since I2 ⊆ N2 ⊆ L3.

81

I

I0I1

I2

N2

N

V

V0V1

V2

L

L0L1

L2

L3

E

E0E1

E2

D2

S0

S00

S01S02

S1

S10

S11 S12D1

D

S30

S300

S301S302

S31

S310

S311 S312

S20

S200

S201S202

S21

S210

S211 S212

M

M0M1

M2

BF

R0R1

R2

NP-complete P-complete ⊕L-complete
NL-complete L-complete L-complete or in coNLOGTIME

Trivial

Figure 4.1: Graph of all closed classes of Boolean functions. The vertices are colored with
the complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the
vertex. Trivial CSPs are those that correspond to constant functions. Every hardness result
is proved under ⩽AC0

m reductions. See Theorem 4.4.7 for details. A similar figure appears in
[ABI+09, Figure 1].

82

It’s not hard to check that, if Pol(S) = L2, then Pol(S) ⊆ Pol(3-XOR-SAT)

(it suffices to observe that bitwise XORing three satisfying assignments to a linear

equation gives rise to a new satisfying assignment to the same equation). Therefore,

from Lemma 4.4.4 we deduce that 3-XOR-SAT admits a reduction to CSP-SATS in

mNL. In order to prove the case Pol(S) = L3, we first prove the following claim.

Claim ([ABI+09, Lemma 3.11]). Let S be a finite set of relations such that Pol(S) =

L2. There exists a finite set of relations S′ such that Pol(S′) = L3 and, moreover,

we have CSP-SATnS ⩽mProj
m CSP-SATn+1

S′ .

Proof. We describe the proof of Lemma 3.11 in [ABI+09] and observe that it gives

a monotone reduction.

For a relation R ∈ S, let R′ = {(¬x1, . . . ,¬xk) : (x1, . . . , xk) ∈ R}. Let also

S′ = {R′ : R ∈ S}. It’s not hard to check that Pol(S′) = L3, since S′ is an invariant

of L2 and N2, and L3 is the smallest clone containing both L2 and N2; moreover, if

ρ ∈ Pol(S′) and ρ is a Boolean function on at least two bits, then ρ ∈ Pol(S) = L2.

Now let F be a instance of CSP-SATnS . For every constraint C = R(x1, . . . , xk)

in F , we add the constraint C ′ = R′(α, x1, . . . , xk) to the S′-formula F ′, where α is

a new variable. Note that F ′ is a S′-formula, defined on n + 1 variables, which is

satisfiable if and only if F is satisfiable. Moreover, the construction of F ′ from F

can be done with a monotone projection.

Since the case Pol(S) = L2 holds, the case Pol(S) = L3 now follows from

Lemma 4.4.4 and the Claim. Finally, from Lemma 4.4.4 we conclude that the

reduction also holds for the case Pol(S) ∈ {N2, I2}, since I2 ⊆ N2 ⊆ L3.

Theorem 4.4.9 (Dichotomy for monotone circuits). Let S be a finite set of rela-

tions. If Pol(S) ⊆ L3 then there is a constant ε > 0 such that mSIZE(CSP-SATS) =

2Ω(nε). Otherwise, we have mSIZE(CSP-SATS) = nO(1).

Proof. If Pol(S) ⊆ L3, the lower bound follows from the ’moreover’ part of Theo-

rem 4.2.1, and Lemma 4.4.8. For the upper bound, we inspect Post’s lattice (Fig-

ure 4.1). Observe that, if Pol(S) ̸⊆ L3, the following are the only possible cases:

1. I0 ⊆ Pol(S) or I1 ⊆ Pol(S). In both cases, any CNF(S) is trivially satisfiable.

2. E2 ⊆ Pol(S) or V2 ⊆ Pol(S). In this case, CSP-SATS ∈ mSIZE[poly] by Theo-

rem 4.4.5.

3. D2 ⊆ Pol(S). In this case, CSP-SATS ∈ mNL ⊆ mSIZE[poly] by Theorem 4.4.5.

83

I

I0I1

I2

N2

N

V

V0V1

V2

L

L0L1

L2

L3

E

E0E1

E2

D2

S0

S00

S01S02

S1

S10

S11 S12D1

D

S30

S300

S301S302

S31

S310

S311 S312

S20

S200

S201S202

S21

S210

S211 S212

M

M0M1

M2

BF

R0R1

R2

Solvable in mSIZE[poly].

Requires monotone circuits of size 2Ω(nε).
Trivial (i.e., a constant function).

Figure 4.2: Illustration of Theorem 4.4.9. The vertices are colored with the monotone circuit
size complexity of deciding CSPs whose set of polymorphisms corresponds to the label of
the vertex.

84

Remark 4.4.10. We remark that the lifting theorem of [GKRS19] (which is an

ingredient in the proof of Theorem 4.2.1) is only used to prove that the monotone

complexity of CSP-SATS is exponential when Pol(S) ⊆ L3. If we only care to show

a superpolynomial separation, then it suffices to apply the superpolynomial lower

bound for CSPs with counting proved in [FV98, BGW99] using the approximation

method. Indeed, we give an explicit proof in Appendix B.1. The same holds for the

consequences of this theorem (see Theorem 4.4.20).

Dichotomy for formulas. The following is proved in [RM99, GKRS19].

Theorem 4.4.11 ([RM99, GKRS19]). There exists ε > 0 such that 3-Horn-SAT ∈
mSIZE[poly] \mDEPTH[o(nε)].

Proof sketch. Since E2 ⊆ Pol(H3) (Lemma 4.4.6) and 3-Horn-SAT = CSP-SATH3 ,

the upper bound follows from Theorem 4.4.5. The lower bound follows from a

lifting theorem of [RM99, GKRS19]. They show that the monotone circuit-depth of

3-Horn-SAT is at least the depth of the smallest Resolution-tree refuting a so-called

pebbling formula. Since this formula requires Resolution-trees of depth nε, the lower

bound follows.

Analogously to the previous section, we show that 3-Horn-SAT reduces to

CSP-SATS whenever Pol(S) is small enough, in a precise sense stated below. We

then deduce the dichotomy for formulas with a similar argument.

Lemma 4.4.12. Let S be a finite set of relations. If Pol(S) ⊆ E2 or Pol(S) ⊆ V2,

then 3-Horn-SAT ⩽mNL
m CSP-SATS.

Proof. We first consider the case Pol(S) ⊆ E2. Note that E2 ⊆ Pol(3-Horn-SAT)

(Lemma 4.4.6). Therefore, from Lemma 4.4.4 we deduce that 3-Horn-SAT admits a

reduction to CSP-SATS in mNL.

Observe that a H3-formula φ is satisfiable if and only if the A3-formula

φ(¬x1, . . . ,¬xn) is satisfiable. Therefore, we have 3-Horn-SAT ⩽mProj
m 3-AntiHorn-SAT.

Observing that V2 ⊆ Pol(A3) (see Lemma 4.4.6), the result now follows from

Lemma 4.4.4 and the previous paragraph.

Theorem 4.4.13 (Dichotomy for monotone formulas). Let S be a finite set of

relations. If Pol(S) ⊆ L3, or Pol(S) ⊆ V2, or Pol(S) ⊆ E2, then there is a constant

ε > 0 such that mDEPTH(CSP-SATS) = Ω(nε). Otherwise, we have CSP-SATS ∈
mNL ⊆ mNC2 ⊆ mDEPTH[log2 n].

85

Proof. We will first prove the lower bound. If Pol(S) ⊆ L3, the lower bound follows

from Theorem 4.4.9. If Pol(S) ⊆ V2 or Pol(S) ⊆ E2, the lower bound follows from

Theorem 4.4.11 and Lemma 4.4.12.

By inspecting Post’s lattice (Remark 4.4.1), we see that the remaning cases

are:

1. I0 ⊆ Pol(S) or I1 ⊆ Pol(S). In both cases, any CNF(S) is trivially satisfiable.

2. S00 ⊆ Pol(S), or S10 ⊆ Pol(S), or D2 ⊆ Pol(S). In all of those three cases, we

have CSP-SATS ∈ mNL by Theorem 4.4.5.

4.4.4 Some auxiliary results

In this section, we prove auxiliary results needed in the proof of a more

general form of Theorem 1.3.4. In particular, we will prove that all CSP-SATS

which are in AC0 are also contained in mAC0 ⊆ mNC1. Moreover, we show that, if

CSP-SATS /∈ mNC1, then CSP-SATS is L-hard under ⩽AC0

m reductions.

We first observe that, when COQ(S1) ⊆ COQ(S2), there exists an efficient

low-depth reduction from CSP-SATS1 to CSP-SATS2 . This reduction, which will be

useful in this section, is more refined than the one given by Lemma 4.4.4. A proof of

the non-monotone version of this statement is found in [BCRV04, Proposition 2.3],

and we give a monotone version of this proof in Section 4.5.2.

Lemma 4.4.14 ([BCRV04, Proposition 2.3]). Let S1 and S2 be finite sets of re-

lations. If COQ(S1) ⊆ COQ(S2), then there exists a constant C ∈ N such that

CSP-SATnS1
⩽mOR
m CSP-SATCnS2

.

Proof. We defer the proof to Section 4.5.2.

We now recall some lemmas from [ABI+09], and prove a few consequences

from them. We say that a set S of relations can express equality if {=} ⊆ COQ(S).

Lemma 4.4.15 ([ABI+09]). Let S be a finite set of relations. Suppose S02 ⊆ Pol(S)

(S12 ⊆ Pol(S), resp.) and that S cannot express equality. Then there exists k ⩾ 2

such that S ⊆ COQ(
{
ORk, x,¬x

}
) (S ⊆ COQ(

{
NANDk, x,¬x

}
), resp.).

Proof. Follows from the proof of Lemma 3.8 of [ABI+09].

Lemma 4.4.16. Let S be a finite set of relations such that Pol(S) ⊆ R2. If S02 ⊆
Pol(S) or S12 ⊆ Pol(S), and S cannot express equality, then CSP-SATS ∈ mAC0

3.

86

I

I0I1

I2

N2

N

V

V0V1

V2

L

L0L1

L2

L3

E

E0E1

E2

D2

S0

S00

S01S02

S1

S10

S11 S12D1

D

S30

S300

S301S302

S31

S310

S311 S312

S20

S200

S201S202

S21

S210

S211 S212

M

M0M1

M2

BF

R0R1

R2

Solvable in mNL ⊆ mDEPTH[O(log2 n)].

Requires monotone depth Ω(nε).
Trivial (i.e., a constant function).

Figure 4.3: Illustration of Theorem 4.4.13. The vertices are colored with the monotone
circuit depth complexity of deciding CSPs whose set of polymorphisms corresponds to the
label of the vertex.

87

Proof. We write the proof in the case S02 ⊆ Pol(S). The other case is analogous.

From Lemmas 4.4.14 and 4.4.15 and Items (iv) and (v) of Lemma 4.4.3, we

get that there is a monotone OR-reduction from CSP-SATS to CSP-SAT{ORk,x,¬x}
for some k. However, an

{
ORk, x,¬x

}
-formula is unsatisfiable iff there exists a literal

and its negation as a constraint in the formula, or if there exists a disjunction in the

formula such that every one of its literals appears negatively as a constraint. This

condition can be easily checked by a polynomial-size monotone DNF. Composing the

monotone DNF with the monotone OR-reduction, we obtain a depth-3 AC0 circuit

computing CSP-SATS .

Lemma 4.4.17 ([ABI+09, Lemma 3.8]). Let S be a finite set of relations such that

Pol(S) ⊆ R2. If S02 ⊆ Pol(S) or S12 ⊆ Pol(S), and S can express equality, then

CSP-SATS is L-hard under ⩽AC0

m reductions.

Lemma 4.4.18. Let S be a finite set of relations. If S02 ̸⊆ Pol(S) and S12 ̸⊆ Pol(S),

then CSP-SATS is L-hard or trivial.

Proof. This follows by inspecting Post’s lattice (Figure 4.1) and the classification

theorem (Theorem 4.4.7).

We may now prove the main result of this subsection.

Theorem 4.4.19. We have CSP ∩ AC0 ⊆ mAC0
3. Moreover, if CSP-SATS /∈ mAC0

3,

then CSP-SATS is L-hard under ⩽AC0

m reductions.

Proof. Let S be a finite set of relations. If CSP-SATS ̸∈ mAC0
3, then, by Lemma 4.4.16,

at least one of the following cases hold:

1. S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, and S can express the equality

relation;

2. S02 ̸⊆ Pol(S) ⊆ R2 and S12 ̸⊆ Pol(S) ⊆ R2.

3. Pol(S) ̸⊆ R2.

Since CSP-SATS is not trivial, we obtain that CSP-SATS is L-hard in the first two

cases by Lemmas 4.4.17 and 4.4.18, and it’s easy to check that CSP-SATS is also L-

hard in the third case by inspecting Post’s lattice (Figure 4.1) and the classification

theorem (Theorem 4.4.7). Since L ̸⊆ AC0, this also implies that, if CSP-SATS ∈ AC0,

then S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, and S cannot express the equality

relation. Lemma 4.4.16 again gives CSP-SATS ∈ mAC0
3.

88

4.4.5 Consequences for monotone circuit lower bounds via lifting

We now prove a stronger form of Theorem 1.3.4. In the previous section, we

showed that CSP∩AC0 ⊆ mAC0. In particular, this means that there does not exist

a finite set of relations S such that CSP-SATS separates AC0 and mNC1, a separation

which we proved in Theorem 1.3.1. We will also observe that, if CSP-SATS /∈ mNC2,

then CSP-SATS is ⊕L-hard.

Theorem 4.4.20. Let S be a finite set of Boolean relations.

1. If CSP-SATS /∈ mAC0
3 then CSP-SATS is L-hard under ⩽AC0

m reductions.

2. If CSP-SATS /∈ mNC2, then CSP-SATS is ⊕L-hard under ⩽AC0

m reductions.

Proof. Item (1) follows from Theorem 4.4.19. To prove item (2), suppose that

mDEPTH(CSP-SATS) = ω(log2 n). Then, by Theorem 4.4.13, we conclude that

Pol(S) ⊆ L3, or Pol(S) ⊆ V2, or Pol(S) ⊆ E2. Theorem 4.4.7 implies that CSP-SATS

is ⊕L-hard.

Further Discussion. We recall the discussion of Section 1.3.3. We introduced and

defined the functions CSP-SATS in that section, as a way to capture monotone cir-

cuit lower bounds proved via lifting. This in particular captures the monotone func-

tion 3-XOR-SAT, which was proved in [GKRS19] to require monotone circuit lower

bounds of size 2n
Ω(1)

to compute, even though ⊕L-machines running in polynomial-

time can compute it. Theorem 4.4.20 proves that this separation between monotone

and non-monotone circuit lower bounds cannot be improved by varying the set of

relations S, as we argue below.

There are two ways one could try to find a function in AC0 with large mono-

tone complexity using a CSP-SAT function. First, one could try to define a set of

relations S such that CSP-SATS ∈ AC0, but the monotone complexity of CSP-SATS

is large. However, Item (1) of Theorem 4.4.20 proves that this is impossible, as any

CSP-SAT function outside of mAC0 is L-hard under simple reductions and, therefore,

cannot be computed in AC0.

Secondly, one could try to be apply the arguments of Section 4.2, consisting

of a padding trick and a simulation theorem. When S is the set of 3XOR relations,

then indeed we obtain a function in AC0[⊕] with superpolynomial monotone circuit

complexity, as proved in Theorem 4.2.1. However, Item (2) of Theorem 4.4.20 proves

that this is best possible, as any CSP-SAT function which admits a superpolynomial

monotone circuit lower bound must be ⊕L-hard and, therefore, at least as hard

as 3-XOR-SAT for non-monotone circuits. Item (2) also shows that even CSP-SAT

89

functions with a ω(log2 n) monotone depth lower bound must be ⊕L-hard, which

suggests that the arguments of Section 4.2 applied to a CSP-SAT function are not

able to prove the separation of Theorem 4.2.4.

A caveat to these impossibility results is in order. First, we only study

Boolean-valued CSPs here, though the framework of lifting can also be applied in

the context of non-Boolean CSPs. It’s not clear if non-Boolean CSPs exhibit the

same dichotomies for monotone computation we proved in this section. We remark

that Schaefer’s dichotomy for Boolean-valued CSPs [Sch78] has been extended to

non-Boolean CSPs [Zhu17, Bul17].

Secondly, the instances of CSP-SAT generated by lifting do not cover the

entirety of the minterms and maxterms of CSP-SAT. In particular, our results do

not rule out the possibility that a clever interpolation of the instances generated

by lifting may give rise to a function that is easier to compute by non-monotone

circuits, and therefore bypasses the hardness results of Theorem 4.4.20. One ex-

ample is the Tardós function [Tar88]. A lifting theorem applied to a Pigeonhole

Principle formula can be used to prove a lower bound on the size of monotone cir-

cuits that accept cliques of size k and reject graphs that are (k − 1)-colorable, for

some k = nε [RM99, Rez23]. A natural interpolation for these instances would be

the Clique(n, k) function, which, being NP-complete, would be related to an NP-

complete CSP-SAT. However, as proved by [Tar88], there is a monotone function in

P which has the same output behaviour over these instances.

4.5 Schaefer’s Theorem in Monotone Complexity

We now give the deferred proofs of lemmas necessary for the results of Sec-

tion 4.4. We will verify that the reductions between Boolean CSP problems via

polymorphisms, as presented in [BCRV03, BCRV04, ABI+09], can also be imple-

mented in the monotone setting.

4.5.1 Connectivity and generation functions

We recall the definitions of two prominent monotone Boolean functions that

have efficient monotone circuits. Let ST-CONN : {0, 1}n
2

→ {0, 1} be the function

that outputs 1 on a given directed graph G if there exists a path from 1 to n in G.

Let GEN : {0, 1}n
3

→ {0, 1} be the Boolean function which receives a set T of triples

(i, j, k) ∈ [n3], and outputs 1 if n ∈ S, where S ⊆ [n] is the set generated with the

following rules:

90

• Axiom: 1 ∈ S,

• Generation: If i, j ∈ S and (i, j, k) ∈ T , then k ∈ S.

The following upper bounds are well-known and easy to prove.

Theorem 4.5.1 ([Juk12, Exercise 7.3], [RM99]). We have ST-CONN ∈ mNL and

GEN ∈ mSIZE[poly].

4.5.2 Proof of reduction lemmas

Here we present monotonised versions of the proofs of [BCRV04, Propositions

2.2 - 2.4], which give a simplified presentation of the results of [Sch78].

Lemma 4.4.14 ([BCRV04, Proposition 2.3]). Let S1 and S2 be finite sets of re-

lations. If COQ(S1) ⊆ COQ(S2), then there exists a constant C ∈ N such that

CSP-SATnS1
⩽mOR
m CSP-SATCnS2

.

Proof. If COQ(S1) ⊆ COQ(S2), then each relation of S1 can be represented as a

conjunctive query over S2. Let F1 be a S1-formula. For each constraint C1 of F1,

there exists a formula φ(C1) in CNF(S2) such that C1 is a projection of φ(C1) (i.e.,

C1 is a conjunctive query of φ(C1)). However, note that C1 is satisfiable if and only

if φ(C1) is satisfiable. So we can replace the constraint C1 by the set of constraints

in φ(C1). Doing this for every constraint in F1, we obtain an S2-formula F2 which

is satisfiable iff F1 is satisfiable.

Now note that, to decide if a given constraint application C of S2 is in the

reduction, it suffices to check if there exists a S1-constraint C1 in F1 such that C is

in φ(C1). Using non-uniformity, this can be easily done by an OR over the relevant

input bits.7

Finally, we observe that, since the arities of each relation in S1 and S2 are

constant, we only add a constant number of variables for each constraint to represent

S1-formulas with conjunctive queries over S2-formulas.

Lemma 4.5.2. Let S be a set of Boolean relations. We have CSP-SATS∪{=} ⩽
mNL
m

CSP-SATS.

Proof. Let F be a (S ∪ {=})-formula on n variables given as an input. Remember

that F is given as a Boolean vector α, where each bit of α represents the presence of

a constraint application on n variables from S ∪ {=}. We first build an undirected

7Even without non-uniformity, one can ’brute-force’ over all relations in S1 and S2 to find the
right representation of a relation in S1 as an S2-formula. This is possible since S1 and S2 are finite.

91

graph G with the variables x1, . . . , xn as vertices, and we put an edge between xi

and xj if the constraint xi = xj appears in F . Note that G can be constructed by

a monotone projection from F .

Let R ∈ S and let C = R(x1, . . . , xn) be a constraint application of R. If C

appears in F , we add to the system every constraint of the form C ′ = R(y1, . . . , yn)

such that, for every i ∈ [n], there exists a path from xi to yi in the graph G. In

this case, we say that C generates C ′. Let F2 be the formula that contains all

non-equality constraints of F , and all the non-equality constraints generated by a

constraint in F . It’s not hard to see that F is satisfiable if and only if F2 is satisfiable,

and therefore the reduction is correct.

Moreover, the reduction can be done in monotone NL using the monotone NL

algorithm for ST-CONN (Theorem 4.5.1). Indeed, there are at most nk constraint

applications of a given relation R of arity k. Therefore, to decide if a constraint

C ′ = R(y1, . . . , yn) appears in F2, it suffices to check if there exists a constraint

application of R in F which generates C ′. This can be checked with nk calls to

ST-CONN.

Lemma 4.4.4 (Polymorphisms characterise the complexity of CSPs [Jea98, BCRV04,

Theorem 2.4]). If Pol(S2) ⊆ Pol(S1), then CSP-SATnS1
⩽mNL
m CSP-SAT

poly(n)
S2

.

Proof. If Pol(S2) ⊆ Pol(S1), then from Lemma 4.4.3 (Items (iii), (v) and (vi)) we

obtain COQ(S1) ⊆ ⟨S1⟩ ⊆ ⟨S2⟩ = COQ(S2 ∪ {=}). Therefore, by Lemmas 4.4.14

and 4.5.2 we can do the following chain of reductions in monotone NL:

CSP-SATS1 ⩽mOR
m CSP-SATS2∪{=} ⩽

mNL
m CSP-SATS2 .

4.5.3 Monotone circuit upper bounds

We restate and prove the theorem.

Theorem 4.4.5 (Monotone version of the upper bounds for CSP-SAT [Sch78,

ABI+09]). Let S be a finite set of relations. The following holds.

1. If E2 ⊆ Pol(S) or V2 ⊆ Pol(S), then CSP-SATS ∈ mSIZE[poly].

2. If D2 ⊆ Pol(S), or S00 ⊆ Pol(S), or S10 ⊆ Pol(S), then CSP-SATS ∈ mNL.

Proof. We prove each case separately.

Proof of (1). We first observe that 3-Horn-SAT (see definition in Section 4.4.2)

can be solved by a reduction to GEN ∈ mSIZE[poly]. Indeed, we interpret each

constraint of the form (¬xi ∨ ¬xj ∨ xk) (which is equivalent to xi ∧ xj =⇒ xk)

92

as a triple (i, j, k), and constraints of the form xi as a triple (0, 0, i). Let S ⊆
{0, 1, 2 . . . , n} be the set generated by these triples, applying the generation rules of

GEN, using 0 ∈ S as the axiom. It suffices to check that there exists some constraint

of the form ¬xi ∨ ¬xj ∨ ¬xk, such that {i, j, k} ⊆ S8. This process can be done

with polynomial-size monotone circuits, invoking GEN. Therefore, it follows from

Theorem 4.5.1 that 3-Horn-SAT ∈ mSIZE[poly].

Moreover, we recall that, if E2 ⊆ Pol(S), then S ⊆ COQ(H3) (in other words,

every S-formula can be written as a set of 3-Horn equations – see Lemma 4.4.6).

Therefore, from Items (iv) and (v) of Lemma 4.4.3 and Lemma 4.4.14, we conclude

that CSP-SATS ⩽mOR
m 3-Horn-SAT ∈ mSIZE[poly].

Now recall that, if V2 ⊆ Pol(S), then S ⊆ COQ(A3), where A3 is the set

of width-3 Anti-Horn relations (i.e., A3 = {(x1 ∨ x2 ∨ ¬x3), (x1 ∨ x2 ∨ x3), (¬x)};
see Lemma 4.4.6). But note that an A3-formula φ is satisfiable if and only if the H3-

formula φ(¬x1, . . . ,¬xn) is satisfiable. Therefore by Lemma 4.4.14 and Items (iv)

and (v) of Lemma 4.4.3, we have CSP-SATS ⩽mOR
m CSP-SATA3 ⩽mProj

m 3-Horn-SAT ∈
mSIZE[poly].

Proof of (2). We first prove the case D2 ⊆ Pol(S). Recall 2-SAT = CSP-SATΓ,

where Γ = {(x1 ∨ x2), (x1 ∨ ¬x2), (¬x1 ∨ ¬x2)}. It’s easy to check that the standard

reduction from 2-SAT to ST-CONN can be done in monotone NL (see [JLL76, The-

orem 4]). Therefore, it follows from Theorem 4.5.1 that 2-SAT ∈ mNL. Now,

recall that, if D2 ⊆ Pol(S), then S ⊆ COQ(Γ) (Lemma 4.4.6). Therefore, from

Lemma 4.4.14 and Items (iv) and (v) of Lemma 4.4.3, we conclude CSP-SATS ∈
mNL.

We now suppose that S00 ⊆ Pol(S). We check that the proof of [ABI+09,

Lemma 3.4] gives a monotone circuit. If S00 ⊆ Pol(S), then there exists k ⩾ 2 such

that S00
k ⊆ Pol(S) (that’s because there does not exist a finite set of relations S

such that Pol(S) = S00). Note that S00
k = Pol(Γ), where Γ =

{
ORk, x,¬x,→,=

}
.

We show below how to decide if a Γ-formula is unsatisfiable in monotone NL. The

result then follows from Lemma 4.4.4.

Let F be a given Γ-formula with n variables. We first construct a directed

graph G, with vertex set {x1, . . . , xn}, and with arcs (xi, xj) if xi → xj is a constraint

of F , and arcs (xi, xj) and (xj , xi) if xi = xj is a constraint of F . This can be done

with a monotone projection. Observe that a Γ-formula F is unsatisfiable if, and only

if, there exists a constraint of the form xi1 ∨ · · · ∨ xik in F , such that there exists a

path from some xij to a constraint ¬y in F . This can be checked in monotone NL

8The constraint ¬xi ∨ ¬xj ∨ ¬xk corresponds to the statement that i /∈ S or j /∈ S or k /∈ S.
This statement is false when {i, j, k} ⊆ S – thus, we find a contradiction with GEN when all these
three (not necessarily distinct) elements are in S.

93

by Theorem 4.5.1.

The case S10 ⊆ Pol(S) is analogous.

94

Chapter 5

On the Computational Hardness

of Quantum One-Wayness

Abstract

There is a large body of work studying what forms of computational hardness are

needed to realize classical cryptography. In particular, one-way functions and pseudoran-

dom generators can be built from each other, and thus require equivalent computational

assumptions in order to be realized. Furthermore, the existence of either of these primitives

implies that P ̸= NP, which gives a lower bound on the necessary hardness.

One can also define versions of each of these primitives with quantum output: respec-

tively one-way state generators and pseudorandom state generators. Unlike in the classical

setting, it is not known whether either primitive can be built from the other. Although it

has been shown that pseudorandom state generators for certain parameter regimes can be

used to build one-way state generators, the implication has not been previously known in

full generality. Furthermore, to the best of our knowledge the existence of one-way state

generators has no known implications in traditional complexity theory.

We show that pseudorandom states compressing n bits to log n + 1 qubits can be

used to build one-way state generators and that pseudorandom states compressing n bits

to ω(log n) qubits are themselves one-way state generators. This is a nearly optimal result,

since pseudorandom states with fewer than c log n-qubit output can be shown to exist un-

conditionally. We also show that any one-way state generator can be broken by a quantum

algorithm with classical access to a PP oracle.

An interesting implication of our results is that a t(n)-copy one-way state generator

exists unconditionally, for every t(n) = o(n/ log n). This contrasts nicely with the previously

known fact that O(n)-copy one-way state generators require computational hardness. We

also outline a new route towards a black-box separation between one-way state generators

and quantum bit commitments.

95

Organisation of the chapter

We begin with a review of results and definitions (Section 5.1), and then move

forward in Section 5.2 to show how one can obtain OWSGs from PRSs even when

the PRS is ’compressing’. In that same section, we will also show how to obtain

fixed-copy OWSGs. Our final technical section will show how to break OWSGs with

a PP oracle (Section 5.3).

5.1 Preliminaries

In this section, we introduce basic notation and recall definitions from the

literature that will be used throughout the rest of the chapter.

5.1.1 Basic quantum computing

Throughout this chapter, we will refer to an n-qubit pure state as a unit

vector in C2n . We will follow the ‘bra-ket’ notation, and write a unit vector ϕ ∈ C2n

as |ϕ⟩, and ϕ∗ as ⟨ϕ|. We will equivalently denote by S(N) the set of N -dimensional

pure quantum states. We identify the set of n-qubit pure states with S(2n).

We will assume familiarity with the notion of quantum circuits, for which

good references are [AB09, Section 10.3] or [NC16, Section 1.3.4]. For this work, it

suffices to think of quantum circuits as a sequence of applications of unitary matrices

of constant size to the qubits of the system. Each of these unitary matrices is taken

from a fixed finite set, called the gate set. By the Solovay-Kitaev theorem (see [AB09,

Theorem 10.12] or [NC16, Appendix 3]), the {CNOT, H, T}-gate set is enough to

efficiently simulate quantum circuits over a different gate set with a desired accuracy.

In particular, all the algorithms, complexity classes and cryptographic primitives we

study in this chapter will be robust with respective to the choice of the gate set,

unless otherwise noted.1

We define a quantum polynomial-time algorithm (QPT) to be a uniformly

generated sequence of polynomial-size quantum circuits. In this work, a quantum

algorithm may either have classical (binary) output or quantum output (i.e., a pure

quantum state). When the algorithm has classical output, a fixed set of the qubits is

fixed beforehand, and the output of the computation is defined as the result of mea-

suring those qubits after applying the circuit. In particular, we may assume without

loss of generality that a quantum circuit for a decision problem L ⊆ {0, 1}∗ outputs

1The only exception is the complexity class PostBQP and its promise-variant PromisePostBQP,
which we will discuss in the next subsection.

96

the measurement of the first qubit. In the next section, when discussing quantum

algorithms with postselection, it will be useful to consider quantum algorithms with

output in {0, 1, ∗} – this can be done by measuring the first 2 qubits, and if the

first qubit measures to 0 we output ∗, otherwise we output the measurement of the

second qubit.

We will also consider quantum algorithms with quantum output. We say

that a quantum circuit G maps n bits to a m-qubit state if, for all k ∈ {0, 1}n, we

have G(|k⟩|0 . . . 0⟩) = |ϕk⟩A ⊗ |νk⟩B, where |ϕk⟩ is a m-qubit state. In other words,

the circuit G receives an input k and some ’workspace qubits’ |0 . . . 0⟩ (also known

as ’ancilla’ qubits) and generates |ϕk⟩ with a trash state |νk⟩ in the other part of

the system, unentangled with |ϕk⟩. Formally, the state |ϕk⟩ can be obtained by

applying the partial trace operator TrB on the output state |ϕk⟩A⊗ |νk⟩B.2 To ease

notation, we will simply write G(k) = |ϕk⟩ in the rest of this chapter to denote that

G generates the state |ϕk⟩ when given |k⟩ |0 . . . 0⟩, as just discussed. Moreover, the

algorithm is said to be polynomial-time if the size of the circuit is polynomial in n

– this means that the ancilla state |0 . . . 0⟩ must have at most poly(n) qubits.

We will not consider non-uniform models in this chapter.

5.1.2 Computational complexity

We refer the reader to [AB09] for the definition of standard complexity classes

such as BQP (Definition 10.9 of [AB09]) and PP (Definition 17.6 of [AB09]).

We recall the definition of the PostBQP complexity class (see, e.g., [Kre21,

Definition 12]). We will only be concerned with its promise version in this chapter.

Definition 5.1.1 (PromisePostBQP). A promise problem Π : {0, 1}∗ → {0, 1,⊥} is
in PromisePostBQP (Postselected Bounded-error Quantum Polynomial time) if there

exists a QPT algorithm A whose output is in {0, 1, ∗}, and which is such that:

(i) For all x ∈ {0, 1}∗, we have P[A(x) ∈ {0, 1}] > 0. When A(x) ∈ {0, 1}, we
say that postselection succeeds.

(ii) If Π(x) = 1, then P[A(x) = 1 | A(x) ∈ {0, 1}] ⩾ 2
3 . In other words, conditioned

on postselection succeeding, A outputs 1 with at least 2
3 probability.

(iii) If Π(x) = 0, then P[A(x) = 0 | A(x) ∈ {0, 1}] ⩾ 2
3 . In other words, conditioned

on postselection succeeding, A outputs 1 with at most 1
3 probability.

2For more on the partial trace and on discarding qubits of a bipartite state, see [NC16, Section
2.4.3].

97

We remark that the definition of PostBQP is sensitive to the choice of the

gate-set, as noticed by [Kup15]. We remark that [Kup15] also proves that every gate-

set that satisfies two “reasonable” conditions gives rise to an equivalent “canonical”

PostBQP class. Throughout the chapter we assume that we are dealing with one

such gate-set, such as the {CNOT, H, T}-gate-set. We refer the reader to [Kup15,

Section 2.5] for a detailed technical discussion of this matter.

We also recall a result of Aaronson [Aar05], which states that PP = PostBQP,

remarking that his result also holds for the corresponding promise classes. Let us

first define PromisePP.

Definition 5.1.2. A promise problem Π : {0, 1}∗ → {0, 1,⊥} is in PromisePP if

there exists a randomized polynomial-time classical algorithm A such that:

(i) If Π(x) = 1, then P[A(x) = 1] > 1
2 .

(ii) If Π(x) = 0, then P[A(x) = 1] ⩽ 1
2 .

Lemma 5.1.3 (Aaronson [Aar05]). PromisePostBQP = PromisePP.

Since PP is a syntactic class, we can extend any promise problem in PromisePP

into a language in PP. This remark will be fundamental in Section 5.3, as it was

also in [Kre21], when we build a PP oracle with which we can break OWSGs.

5.1.3 Quantum information theory and cryptography

We say that a function α : N → N satisfies α ∈ negl(n) if the asymptotic

growth of α is α(n) = n−ω(1). We will often simply write negl(n) in equations and

inequalities to denote a function in negl(n).

The Haar measure over S(2n), which we denote by Haar(n), is defined as the

unique unitarily invariant measure over S(2n). This means that, for every unitary

U , if a random state |ϕ⟩ is distributed according to the Haar measure, then U |ϕ⟩
also is. A proof of the uniqueness of this measure can be found in [Wat18, Corollary

7.23], where it is referred to as the uniform spherical measure3.

An important alternative definition of the Haar measure is given by the

following lemma, which seems to have been first observed by Muller [Mul59]. We

assume familiarity with the Gaussian distribution.

3Following the current literature on quantum cryptography (e.g., [AGQY22, Kre21]), we decide
to call it the ‘Haar measure’ instead of the ‘uniform spherical measure’. Quantum cryptographers
call it the Haar measure on states because the Haar measure on unitaries – corresponding to a
notion of a uniformly random unitary matrix, though we will not discuss it in this work – induces
the Haar measure on states in the following way. Fix any initial state |ϕ⟩ (e.g., the |0 . . . 0⟩ state),
and sample a Haar-random unitary U . It is known that the distribution of pure states given by
U |ϕ⟩ follows the Haar distribution ([Wat18, Theorem 7.22]).

98

Lemma 5.1.4 ([Wat18, Corollary 7.23]). Let n ∈ N. Sampling from the Haar

distribution Haar(n) is equivalent to sampling |ψ⟩ as

|ψ⟩ ← 1√∑
x∈{0,1}n α

2
x + β2x

·
∑

x∈{0,1}n
(αx + βxi) |x⟩ ,

where each αx, βx is sampled according to the standard Gaussian distribution with

expectation 0 and standard deviation 1.

Quantum cryptography. We start by introducing the notion of pseudorandom

state generators (PRS) [JLS18]. Roughly speaking, given a classical key k, a PRS

maps k to a quantum pure state |ϕk⟩. The security guarantee is that the output of

a PRS on a random input should look like a random state. That is, it is hard for

any quantum adversary to distinguish a random |ϕk⟩ from a Haar random state.

Definition 5.1.5 (Pseudorandom States, Definition 2 of [JLS18]). Let λ be the

security parameter and let K = K(λ) be a set of binary strings referred to as the

key space, with the property that every key k ∈ K has at most poly(λ) bits. Let G

be a QPT algorithm that on input k ∈ K outputs a pure quantum state |ϕk⟩ over
n = n(λ) qubits. We say G is (t, ε)-pseudorandom if the distribution over outputs is

ε-indistinguishable from Haar random given t copies. In other words, for any QPT

adversary A, we have∣∣∣∣ P
k←K

[A(|ϕk⟩⊗t) = 1]− P
|ψ⟩←Haar(n)

[A(|ψ⟩⊗t) = 1]

∣∣∣∣ ⩽ ε.

We say that G is pseudorandom if it is
(
λc, 1

λc

)
-pseudorandom for all c > 0,

and that it is t-pseudorandom or a t-copy PRS if it is
(
t, 1
λc

)
-pseudorandom for all

c > 0.

We turn to the notion of one-way state generators (OWSGs) [MY22a]. A

OWSG maps a classical key k to quantum state |ϕk⟩. The security guarantee of

a OWSG is that, given any polynomial number of copies of |ϕk⟩, it is hard for a

quantum algorithm to find keys k′ such |ϕk⟩ , |ϕk′⟩ have noticeable overlap. OWSGs

can also be defined to have mixed state outputs [MY22b], although we will not

consider this variant in this work.

Definition 5.1.6 (One-Way State Generators, Definition 4.1 of [MY22b]). Let λ

be the security parameter and let K = K(λ) be a set of binary strings referred to as

the key space, with the property that every key k ∈ K has at most poly(λ) bits. Let

G be a QPT algorithm that on input k ∈ K outputs a pure quantum state |ϕk⟩. We

99

say G is (t, ε)-one-way if the outputs are hard to invert with accuracy at least ε. In

other words, for any QPT adversary A, we have

E
k←K

k′←A(|ϕk⟩⊗t)

[
|⟨ϕk|ϕk′⟩|2

]
⩽ ε.

We say that G is one-way or strongly one way if it is
(
λc, 1

λc

)
-one-way for all c > 0,

and that it is t-one-way, a t-copy OWSG, or a t-copy strong OWSG if it is
(
t, 1
λc

)
-

one-way for all c > 0.

We remark that all of the results in this chapter will also hold for the more

general definition of (pure-state) one-way state generators that was introduced in the

later work of Morimae and Yamakawa [MY22a], where the one-way state generator

is allowed to have a separate quantum key generation procedure.4

We will rely on the notion of one-way puzzles, defined in [KT23]. A one-way

puzzle is a pair of algorithms (Samp,Ver) where Samp samples a key-puzzle pair

(k, s) such that Ver(k, s) outputs 1 with overwhelming probability. Samp is required

to be an efficient quantum algorithm, and Ver is allowed to be any arbitrary function.

The security requirement is that given s, it is hard for an adversary to find a k′ such

that Ver(k′, s) = 1.

Definition 5.1.7 (One-Way Puzzles [KT23]). Let λ be the security parameter. A

one-way puzzle is a pair of sampling and verification algorithms (Samp,Ver) with

the following syntax.

• Samp(1λ) → (k, s) is a (uniform) quantum polynomial time algorithm that

outputs a pair of classical strings (k, s). We refer to s as the puzzle and k as

its key. Without loss of generality we may assume that k ∈ {0, 1}λ.

• Ver(k, s) → ⊤ or ⊥, is an unbounded algorithm that on input any pair of

classical strings (k, s) halts and outputs either ⊤ or ⊥.

These satisfy the following properties.

4The results shown in Section 5.2 imply the existence of one-way state generators in the sense of
Definition 5.1.6 in various settings. Since these are more restricted objects than the ones considered
in the more general definition of [MY22a], our results will also implies their existence in the same
settings and with an analogous parameter regime. Furthermore, since our oracle QPT algorithm in
Section 5.3 comes from an algorithm breaking one-way puzzles, and one-way puzzles were proved
in [KT23] to follow from the “general” pure state OWSGs of [MY22a], our algorithm will therefore
also break OWSGs with a quantum key generation procedure.

100

• Correctness. Outputs of the sampler pass verification with overwhelming

probability, i.e.,

P
(k,s)←Samp(1λ)

[Ver(k, s) = ⊤] = 1− negl(λ).

• Security. Given s, it is (quantumly) computationally infeasible to find k

satisfying Ver(k, s) = ⊤, i.e., for every polynomial-sized quantum circuit A,

P
(k,s)←Samp(1λ)

[Ver(A(s), s) = ⊤] = negl(λ).

An important recent result due to Khurana and Tomer [KT23] states that

one-way state generators imply one-way puzzles. This will be crucial for our algo-

rithm in Section 5.3.

Theorem 5.1.8 ([KT23, Theorem 4.2]). If there exists a (O(n), negl(n))-OWSG,

then there exists a one-way puzzle.

Remark 5.1.9 (A remark about the relationship between quantum-output prim-

itives and post-quantum primitives). We note that post-quantum one-way func-

tions (i.e., classical one-way functions that are secure against quantum adversaries)

imply the existence of PRSs with any desired output length [BS20]. Since post-

quantum pseudorandom generators (classical pseudorandom generators which are

secure against quantum adversaries) trivally imply the existence of post-quantum

one-way functions, one also observes that post-quantum pseudorandom generators

imply the existence of pseudorandom states.

We furthermore observe that, since post-quantum one-way functions imply

the existence of PRSs of any desired length [BS20], and expanding PRSs imply

OWSGs [MY22b], we can conclude that post-quantum one-way functions also imply

the existence of one-way state generators. Moreover, as noted in Section 1.4.4, the

reduction of [BS20] implies that our proof that PRSs are OWSGs (Theorem 5.2.4)

is optimal in its parameters.

5.1.4 Probability distributions

We recall a few standard probability distributions, the chi-squared distribu-

tion and the Fisher-Snedecor distribution, the latter of which will be useful when

trying to show that compressing PRSs are one-way state generators (Lemma 5.2.1).

Definition 5.1.10 (Chi-squared distribution). Let X1, . . . , Xk be independent nor-

mal random variables with mean 0 and variance 1. The chi-square distribution with

101

k degrees of freedom, denoted by χ2(k), is the probability distribution of the sum∑k
i=1X

2
i .

Definition 5.1.11 (Fisher-Snedecor distribution). Let a, b ∈ N. The Fisher-Snedecor

distribution with a and b degrees of freedom, denoted by F (a, b), is the distribution

given by the following ratio:

F (a, b) ∼ χ2(a)/a

χ2(b)/b
=
b

a
· χ

2(a)

χ2(b)
.

We now recall the definition of the beta function and its variations in order to

express the cumulative distribution function of the F -distribution. The beta function

is defined as

B(a, b) :=

∫ 1

0
xa−1(1− x)b−1 dx.

The incomplete beta function is defined as

B(t; a, b) :=

∫ t

0
xa−1(1− x)b−1 dx.

The regularised incomplete beta function is defined as

Ix(a, b) :=
B(x; a, b)

B(a, b)
.

We can now express the cumulative distribution function of the F -distribution.

An exposition of this fact can be found in the encyclopedia entry [Cab11] or in [JKB95,

Equation 27.8].

Lemma 5.1.12 (Cumulative distribution function of the F -distribution). The cu-

mulative distribution function pa,b(t) of the F (a, b) distribution satisfies

pa,b(t) = Iat/(at+b)(a/2, b/2).

In particular, we have

P
Y←F (a,b)

[Y ⩽ θ] =

∫ (aθ)/(aθ+b)
0 xa−1(1− x)b−1 dx∫ 1

0 x
a−1(1− x)b−1 dx

.

Given two probability distributions D0,D1 supported in a finite set X, we

define their total variation distance dTV(D0,D1) as follows:

dTV(D0,D1) :=
1

2

∑
x∈X
|D0(x)−D1(x)| ,

102

where Di(x) is the probability of x being sampled by distribution Di for i ∈ {0, 1}.

5.1.5 Approximate t-designs

In our construction of unconditional t-copy OWSGs, we will use approximate

t-designs. Informally, an approximate t-design is a distribution over states such that

t copies of an output state is statistically close to t copies of a Haar random state.

We first recall that the Trace norm (also known as Schatten 1-norm) of a

matrix M is defined as ∥M∥1 := Tr(
√
M∗M).

Definition 5.1.13 (Approximate t-Design, Definition 2.2 of [OSP23], rephrased5).

A probability distribution S over S(2n) is an ε-approximate t-design if∥∥∥∥ E
|ψ⟩←Haar(n)

[
|ψ⟩⟨ψ|⊗t

]
− E
|ψ⟩←S

[
|ψ⟩⟨ψ|⊗t

]∥∥∥∥
1

⩽ ε, (5.1)

where ∥·∥1 is the trace norm. We call G an efficient ε-approximate t-design if G

is a quantum algorithm running in time poly(n,m, t, log(1/ε)) which maps classical

strings in {0, 1}n to quantum states over S(2m), and such that the output distribution

of G(·) on a random n-bit string forms an ε-approximate t-design.

Inequality (5.1) implies that no measurement can distinguish t copies of an

ε-approximate t-design from t copies of a Haar random state with advantage greater

than 1/2 + ε/46. In particular, no QPT algorithm can make this distinguishment,

and thus t-designs are t-copy PRSs.

Recently, it has been shown that approximate t-designs with almost optimal

seed exist unconditionally.

Theorem 5.1.14 (Theorem 1.1 of [OSP23], rephrased). For all m, t, ε > 0, there

exists an efficient ε-approximate t-design with input size n = O(mt+ log(1/ε)).

5.2 One-way state generators from compressing pseu-

dorandom states

We construct both weak and strong t-copy one-way state generators from

(t+1)-copy compressing pseudorandom states. Before this the only known reduction

worked for expanding PRS mapping n-bit strings to cn-qubit states [MY22a] for

5The reference [OSP23] concentrates on unitary designs, a notion we will not consider in this
work. However, unitary t-designs are known to imply our notion of (state) t-designs (see [Kre21,
Proposition 18]).

6This is known as the Holevo-Helstrom theorem; see [Wat18, Theorem 3.4].

103

some c > 1. To generalise this reduction, we rely on the following concentration

inequality, which informally states that, with high probability, any fixed state is

unlikely to be close to Haar-random states. We will then use this in Theorem 5.2.2

to bound how well a OWSG inverter can distinguish outputs of a PRS from Haar-

random states.

Lemma 5.2.1 (Concentration of Haar States7). Let |ϕ0⟩ be any state of dimension

N = 2n. Then, for any s > 0, we have

P
|ψ⟩∼Haar(n)

[
|⟨ϕ0|ψ⟩|2 ⩾

1

s

]
⩽

(
s

s+ 1

)N−1
.

Proof. Since the Haar distribution is invariant under unitary transformations, with-

out loss of generality we assume |ϕ0⟩ = |0⟩.
Recall (Lemma 5.1.4) that sampling from the Haar distribution is equivalent

to sampling |ψ⟩ as

1√∑
x∈{0,1}n α

2
x + β2x

·
∑

x∈{0,1}n
(αx + βxi) |x⟩ ,

where each αx, βx is sampled according to the standard Gaussian with expectation

0 and standard deviation 1. Then, we define the random variable Y as

Y :=
α2
0 + β20∑

x ̸=0 α
2
x + β2x

.

Expanding out the inner product gives us

|⟨0|ψ⟩|2 =
α2
0 + β20∑

x(α2
x + β2x)

⩽ Y.

But observe that each αx, βx is sampled independently, and so Y is distributed as

the ratio of two chi-squared random variables. So, we see that Y is sampled as a

(scaled) F -distribution as follows:

Y ∼ χ2(2)

χ2(2N − 2)
∼ 2

2N − 2
· F (2, 2N − 2).

7In [Kre21] the author refers to a closely related inequality as following from “standard concen-
tration inequalities, or even an explicit computation”. However we were unable to find an actual
proof of the inequality in either the citation listed [BHH16], or in the paper which it cites [HLW06].
Consequently we decided to include a proof here for completeness.

104

We conclude by Lemma 5.1.12 that

P
[
Y ⩾

1

s

]
= P

[
F (2, 2N − 2) ⩾

N − 1

s

]

= 1−
∫ 1

s+1

0 (1− x)N−2dx∫ 1
0 (1− x)N−2dx

= 1−

[
− 1
N−1 · (1− x)N−1

]1/(s+1)

0[
− 1
N−1 · (1− x)N−1

]1
0

= 1−
[
(1− x)N−1

]1/(s+1)

0

[(1− x)N−1]10

= 1 +

((
1− 1

s+ 1

)N−1
− 1

)

=

(
s

s+ 1

)N−1
,

where [f(x)]10 = f(1)− f(0). Since

P
|ψ⟩∼Haar(N)

[
|⟨ϕ0|ψ⟩|2 ⩾

1

s

]
⩽ P

[
Y ⩾

1

s

]
,

we are done.

Using this lemma we first show a general result stating that state generators

that are pseudorandom must also be one-way. We then apply the result in two

different parameter regimes. While [Kre21] only claims that PRSs with m = n

output bits can be broken by PP, [AGQY22] calls out that the proof can be extended

to the case when m ⩾ log n + c. For this regime, we show that PRSs are weak

OWSGs. We then show that slightly less compressing PRSs (m = ω(log n)) are

strong OWSGs. In all these three results, the number of copies falls by 1 moving

from a PRS to a OWSG. While we end up focusing on sublinear-copy PRSs in the

next subsection, these reductions work in the default many-copy setting considered

in most papers on quantum cryptographic primitives.

Lemma 5.2.2. For all f(n) and for

δ = 2n ·
(

f(n)

f(n) + 1

)(2m−1)
+

1

f(n)
,

if G : k 7→ |ϕk⟩ is a state generator taking n-bit strings to m-qubit pure states which

105

is (t+ 1, ε)-pseudorandom, then it is also (t, ε+ δ)-one way.

Proof. For the sake of contradiction, assume that there exists an adversary A that

can succeed with probability larger than ε+δ in the t-copy one-wayness game (Defi-

nition 5.1.6). We will construct a new adversary A′ for the pseudorandomness game

as follows:

Algorithm 1 Adversary A′ in the pseudorandomness game

Input: |ψ⟩⊗(t+1).
Output: 0 if |ψ⟩ is pseudorandom, 1 if |ψ⟩ is Haar random.

1: Run A on the first t copies and obtain k′ ← A(|ψ⟩⊗t)
2:

3: Measure the last copy of |ψ⟩ in the basis {|ϕk′⟩⟨ϕk′ | , I − |ϕk′⟩⟨ϕk′ |}
4:

5: return 1 if the result is |ϕk′⟩⟨ϕk′ |, else return 0.

Observe that when A′ is given a pseudorandom input, it outputs 1 with

probability at least

P
k←K

[
A′
(
|ϕk⟩⊗(t+1)

)
= 1
]

= E
k←K

[
|⟨ϕk|ϕk′⟩|2

∣∣∣k′ ← A (|ϕk⟩⊗t)] > ε+ δ,

where the key space K is equal to {0, 1}n here. Thus, it suffices remains to bound

the probability that A′ detects a Haar random state:

P
|ψ⟩←Haar(m)

[
A′
(
|ψ⟩⊗(t+1)

)
= 1
]
⩽ δ.

By construction, we have

P
|ψ⟩←Haar(m)

[
A′
(
|ψ⟩⊗(t+1)

)
= 1
]

= E
|ψ⟩←Haar(m)

[
|⟨ψ|ϕk⟩|2

∣∣∣k ← A (|ψ⟩⊗t)]

=

∫
S(2m)

dµ(ψ) ·
∑

k∈{0,1}n
P
[
k ← A

(
|ψ⟩⊗t

)]
· |⟨ψ|ϕk⟩|2

⩽
∫
S(2m)

dµ(ψ) · max
k∈{0,1}n

|⟨ψ|ϕk⟩|2 .

Where µ(ψ) is the Haar measure on the space of m-qubit pure states. We will

106

now partition the set of m-qubit pure states into the states that are ‘close’ to a

pseudorandom state |ϕk⟩, and the states that are ‘far’ from all pseudorandom states.

Formally, we define

Af :=

{
|ψ⟩ ∈ S(2m)

∣∣∣∣max
k
|⟨ψ|ϕk⟩|2 ⩾

1

f(n)

}
.

The set of states that are ‘far’ from all pseudorandom states is its complement,

Bf :=

{
|ψ⟩ ∈ S(2m)

∣∣∣∣max
k
|⟨ψ|ϕk⟩|2 <

1

f(n)

}
.

We proceed with computing the integral separately for the two sets:

∫
S(2m)

dµ(ψ) · max
k∈{0,1}n

|⟨ψ|ϕk⟩|2 =

∫
Af

dµ(ψ) · max
k∈{0,1}n

|⟨ψ|ϕk⟩|2

+

∫
Bf

dµ(ψ) · max
k∈{0,1}n

|⟨ψ|ϕk⟩|2

⩽
∫
Af

dµ(ψ) + max
|ψ⟩∈Bf

k∈{0,1}n

|⟨ψ|ϕk⟩|2

< P
|ψ⟩←Haar(m)

[
∃k
∣∣∣∣|⟨ψ|ϕk⟩|2 ⩾ 1

f(n)

]
+

1

f(n)

⩽
∑
k∈K

P
|ψ⟩←Haar(m)

[
|⟨ψ|ϕk⟩|2 ⩾

1

f(n)

]
+

1

f(n)
.

Lemma 5.2.1 implies that

P
|ψ⟩←Haar(m)

[
A′
(
|ψ⟩⊗(t+1)

)
= 1
]
⩽ 2n ·

(
f(n)

1 + f(n)

)2m−1
+

1

f(n)
= δ.

We conclude∣∣∣∣ P
k←K

[
A′
(
|ψ⟩⊗(t+1)

)
= 1
]
− P
|ψ⟩←Haar(m)

[
A′
(
|ψ⟩⊗(t+1)

)
= 1
]∣∣∣∣ > ε.

Using this general result we can specify to the two theorems below.

Theorem 5.2.3 (PRSs imply OWSGs). If G is a state generator taking n-bit strings

to m > log n+ c qubit states (with c ⩾ 1) which is (t+ 1, ε)-pseudorandom, then G

is also (t, ε+ 3/4)-one-way.

107

Proof. Take Lemma 5.2.2 with f(n) = 2, and m > log n+ c. We get that

δ ⩽ 2n ·
(

2

3

)n·2c−1
+

1

2

=
3

2
·
(

22
c+1

32c

)n
+

1

2
.

Since c > 1, the left term becomes less than 1/4 for sufficiently large n, and

thus δ < 3/4.

Using amplification arguments from [MY22b], these (t, ε+ 3/4)-OWSGs can

be used to construct strong OWSGs with negligible probability of inversion.

This reduction is nearly optimal. [BCQ22] showed that there exist statistical

many-copy PRSs with c log n output bits for some c < 1. As shown later, strong

OWSGs must imply computational assumptions (e.g. BQP ̸= PP) so they cannot

be implied by statistical or information-theoretic primitives. Consequently there

can be no proof that PRSs with output shorter than c log n qubits imply OWSGs,

meaning our proof is optimal up to multiplicative constant factors.

We can also show that PRSs with superlogarithmic output are themselves

strong OWSGs.

Theorem 5.2.4 (PRSs are strong OWSGs). If G is a state generator taking n-bit

strings to m = ω(log n)-qubit states which is (t+ 1, ε)-pseudorandom, then it is also

(t, ε+ negl(n))-one way.

Proof. Take Lemma 5.2.2 and set f(n) = 2m−1
2m/2 −1. Note that f(n) = 2Ω(m) = nω(1).

We get

δ = 2n ·
(

f(n)

f(n) + 1

)2m−1
+

1

f(n)

⩽ 2n ·
(

1− 1

f(n) + 1

)2m−1
+ negl(n)

⩽ 2n ·
(

1

e

)2m/2

+ negl(n)

= 2n−Ω(nω(1)) + negl(n)

= negl(n).

5.2.1 Unconditional OWSGs from efficient approximate t-designs

We first observe that any efficient 2−λ-approximate t-design is also a t-copy

PRS. This follows definitionally, since t copies from a t-design are statistically close

108

to t copies from a Haar random state.

Proposition 5.2.5. Let G be an efficient 2−λ-approximate t-design that maps n-bit

strings to m-qubit pure states. Denote |ψk⟩ := G(k). Then for any QPT adversary

A, ∣∣∣∣ P
k←{0,1}n

[
A
(
|ψk⟩⊗t

)
= 1
]
− P
|ψ⟩←Haar(m)

[
A
(
|ψ⟩⊗t

)
= 1
]∣∣∣∣ ⩽ negl(λ).

In particular, the proposition holds definitionally for any (even inefficient)

quantum algorithm A, and so therefore must also hold for QPT adversaries. A

simple corollary of Theorem 5.2.4 then shows that efficient approximate t-designs

are also OWSGs.

Corollary 5.2.6. Let G be an efficient ε-approximate t-design mapping n bits to

m = ω(log n) qubits. Then G is (t, ε+ negl(n))-one-way.

Theorem 5.1.14 with ε = 2−λ gives that, for any polynomial t, t(λ)-copy PRSs

exist unconditionally, and thus Theorem 5.2.4 concludes that t(λ)-copy OWSGs also

exist unconditionally.

Contrast this with the recent result of Khurana and Tomer [KT23], where

they show that Θ(n)-copy OWSGs can be used to build quantum bit commitments

(and thus require computational hardness [LC97]). This raises the question of what

is the largest number of copies t (relative to the number of classical input bits n)

for which OWSGs exist unconditionally. We show that the efficient approximate

t-designs of [OSP23] approach this computational threshold up to a logarithmic

factor.

Corollary 5.2.7. For every function α = α(n) = ω(1), there exists a Θ
(

n
α·logn

)
-

copy OWSG.

Proof. From Theorem 5.1.14, we know that there exists some positive constant c

such that, for n = c · mt + c log(1/ε), there is an efficient ε-approximate t-design

mapping n bits to m qubits.

Setting ε = 2−λ, n = 2c · λ, t = λ/(α log n) and m = α · log n gives us

n = 2cλ = cαt log n+ cλ = cmt+ c log(1/ε),

and thus we can build efficient ε-approximate Θ(n/(α log n))-designs. But since

m = ω(log n), using such a design also gives a Θ
(

n
α logn

)
-copy strong OWSG from

Corollary 5.2.6.

109

5.3 Breaking one-way state generators with a PP oracle

In this section, we show how to break one-way state generators (OWSGs)

with a PP oracle. Since one-way state generators imply one-way puzzles (Theo-

rem 5.1.8, due to [KT23]), it suffices to show how to break one-way puzzles using a

PP oracle. Recall that a one-way puzzle is a pair of sampling and verification quan-

tum algorithms (Samp,Ver) (see Definition 5.1.7). The algorithm Samp(1n) outputs

a pair (k, s), where k is referred to as the key and s as the puzzle. To break the

one-way puzzle, it suffices to create a quantum algorithm A that, given a puzzle s,

returns a key k′ such that Ver(k′, s) is accepted with non-negligible probability.

Our strategy to construct A is as follows. Given a puzzle s sampled according

to Samp, we will sample a key k according to the conditional distribution of keys

that are sampled together with s. This will suffice to break the one-way puzzle,

as Ver accepts pairs from Samp with (1 − negl)-probability. To sample from this

distribution, we first show how to use the PP oracle to estimate the conditional

probability, and finally how to sample according to a distribution that is close to

the true conditional distribution.

Lemma 5.3.1. Let S be a (uniform) quantum polynomial time algorithm that out-

puts n bits, denoted as a pair of a string x, and a bit b. There exists a poly-time

quantum algorithm A and a PP language L such that AL can estimate the distribu-

tion of bit b, conditioned on the output string x. Formally,

px,b −
1

n2
⩽ AL(S, 1n, x, b) ⩽ px,b +

1

n2

where px,b = P [S(1n) = (x, b)|S(1n) ∈ {(x, 0), (x, 1)}].

Proof. Our quantum algorithm A will take as input the algorithm S, a unary de-

scription of the length 1n, the outputs (x, b), and will estimate the conditional

probability of b, conditioned on the first output of S being x.

Definition of the PP language. We will describe the PP language L in terms of

a PromisePostBQP algorithm B(S, x, t). This will define a promise problem which

is computed by B(S, x, t). By the equivalence PromisePostBQP = PromisePP, this

gives us a promise problem in PromisePP. Since PromisePP is a syntactic class, this

can be extended to a language L ∈ PP. However, later on our algorithm A will

only depend on the behaviour of the oracle to L on inputs that satisfy the promise

condition of the promise problem defined by B(S, x, t).

110

We first assume without loss of generality that any measurements in S are

delayed until the very end of the algorithm. The algorithm B will simulate S and

postselect on the output measurements matching x. Conditioned on postselection

succeeding, the output register for b will contain the pure state
√
px,0 |0⟩+

√
px,1 |1⟩.

Then B measures the register of b, and repeats this procedure r = Θ(n4) times,

outputting 1 if the measurements yields 1 at least a t
2n2 fraction of the time. This

ends the description of the PromisePostBQP algorithm B(S, x, t).

Which inputs (S, x, t) are accepted by B? Let b1, . . . ,br denote the random

variables that correspond to the value of the b register at each simulation of S by B.

We define B =
∑

i bi to be their sum. Note that B/r is the fraction of measurements

that yield a 1 in the algorithm B, and recall that we accept if this fraction is at least

t/(2n2). By standard concentration inequalities (e.g., Chebyshev’s of Chernoff’s;

see [AB09, Lemma A.12 or Theorem A.14]), when the number of repetitions r is at

least Θ(n4), then

P
b1,...,br

[∣∣∣∣Br − px,1
∣∣∣∣ > 1

4n2

]
<

1

3
.

This implies that, if px,1 ⩾ t
2n2 + 1

4n2 , then B
r >

t
2n2 with probability 2/3. Moreover,

if px,1 ⩽ t
2n2 − 1

4n2 , then B
r <

t
2n2 with probability 2/3. We conclude(S, x, t) ∈ L, if px,1 ⩾ t

2n2 + 1
4n2 ,

(S, x, t) ̸∈ L, if px,1 ⩽ t
2n2 − 1

4n2 .
(5.2)

Note that this only gives us information about the output of B on inputs (S, x, t)

such that
∣∣px,1 − t

2n2

∣∣ ⩾ 1
4n2 . Henceforth we will call this inequality the promise

condition. We remark that, if (S, x, t) does not satisfy the promise condition, then

(S, x, t+ 1) satisfies it. Indeed, if
∣∣px,1 − t

2n2

∣∣ < 1
4n2 , we have

px,1 ⩽
t

2n2
+

1

4n2
=
t+ 1

2n2
− 1

2n2
+

1

4n2
=
t+ 1

2n2
− 1

4n2
,

and therefore
∣∣px,1 − t+1

2n2

∣∣ ⩾ 1
4n2 . In particular, we obtain that (S, x, t+ 1) /∈ L.

Description of AL. Given access to this PP language, A will query the oracle

on the inputs {(S, x, 0), . . . , (S, x, 2n2)}. Then A will output t
2n2 , for the smallest

t such that (S, x, t) is rejected by the oracle (if (S, x, t) is accepted for all t, then

A outputs 1). Note that, if (S, x, t − 1) is accepted by the oracle, and (S, x, t) is

rejected, then one of the following three things must have happened:

1. (S, x, t− 1) ∈ L and (S, x, t) ̸∈ L, or

111

2. (S, x, t− 1) does not satisfy the promise condition, and (S, x, t) ̸∈ L, or

3. (S, x, t− 1) ∈ L and (S, x, t) does not satisfy the promise condition.

As we observed above, it never occurs that (S, x, t− 1) does not satisfy the promise

condition, and (S, x, t) ∈ L. By inspection, using (5.2), in all of those three cases

we get that the value t
2n2 is an additive approximation to px,1 with error at most

1
n2 . Additionally, since px,0 = 1− px,1, the value 2n2−t

2n2 is an additive approximation

for px,0.

When Samp(1n) → (k, s) is is a uniform quantum polynomial-time algo-

rithm outputting a pair of classical strings (k, s), we will denote by (Samp | s′)key

the distribution of keys k output by Samp(1n), conditioned on the puzzle being s′.

Lemma 5.3.2. Let Samp be a (uniform) quantum polynomial time algorithm such

that Samp(1n) outputs a pair of classical strings (k, s), denoted as the key and the

puzzle respectively, where k ∈ {0, 1}n. There exists a poly-time quantum algorithm

A and a PP language L such that AL takes as input a puzzle s′ and outputs a key k′,

and whose distribution has total variation distance at most 1/n from (Samp | s′)key.
In other words, we have

(
k′ | k′ ← AL(1n, s′)

)
≈ 1

n
(Samp | s′)key.

Proof. On a high level, the algorithm A will output a key k′ by sampling its bits

one by one. At the ith iteration, it will use the first i− 1 bits of k′ to estimate the

distribution of the ith bit using a PP oracle, as in Lemma 5.3.1. Then it will sample

the ith bit of k′ according to this estimated distribution. The PP language L that

we use is the same as the one shown to exist in that lemma.

In more detail, let us define the sequence {S⩽i}i∈[n] of algorithms based on

Samp, where S⩽i is the (uniform) quantum polynomial time algorithm that simulates

Samp, but only outputs the puzzle s and the first i bits of the key k.

On input (1n, s′), the algorithm A will proceed in n iterations. In the first

iteration, it will use Lemma 5.3.1 on S⩽1 with output s′ and estimate (up to 1
n2

additive error) the probability that the first bit of the key is 1, conditioned on the

puzzle s′. Call this estimate p̃1. The algorithm will then sample the first bit of k′

according to the Bernoulli distribution defined by p̃1.

Now A proceeds by sampling the remaining bits. In the ith iteration, it uses

Lemma 5.3.1 with the sampler S⩽i and outputs an estimate p̃i of the probability

that the ith bit of k′ is 1, conditioned on the puzzle s′ and the first i − 1 bits of

112

k′. Then it samples the ith bit according to the estimated distribution. Finally, A
outputs k′ after the end of the nth iteration.

It remains to show that the output distribution of A is close to (Samp | s′)key,
the output distribution of Samp(1n) conditioned on the puzzle s′. We will show this

via a hybrid argument.

Let D0 := (Samp | s′)key be the true distribution of the key k conditioned on

the puzzle s′. We define n hybrid distributions Di for i ∈ {1, . . . , n} on keys. The

hybrid Di runs in n iterations and in each iteration samples the next bit of the key.

In the first i iterations (that correspond to the first i bits), the distribution Di uses

the estimated probabilities p̃1, . . . , p̃i. The final n − i bits are sampled according

to the true conditional probabilities (i.e., according to (Samp | s′)key, conditioned on

the outcome of the previous bits). Note that Dn now corresponds to the output

distribution of our algorithm A. We show that every two consecutive distributions

are at most 1
n2 far in total variation distance, and thus the total distance between

the true distribution of the key and the output distribution of A is at most 1
n from

the triangle inequality.

Claim 5.3.3. For every i ∈ {0, . . . , n− 1}, we have

dTV(Di,Di+1) ⩽
1

n2
.

Proof. Before diving into the proof, we introduce some useful notation. We use

k[x,y] to denote the length-(y − x + 1) substring that includes bits {x, . . . , y} of

k. Additionally, even though Di is a distribution over n-bit strings, we will abuse

notation and consider the probability assigned to substrings of the form k[x,y]. In

that case, we write

Di(k[x,y]) := P
k′←Di

[
k′[x,y] = k[x,y]

]
.

We will also consider the probability assigned to substrings k[x, y], conditioned on

a prefix k[1,x], in which case we write

Di
(
k[x,y]

∣∣k[1,x−1]) := P
k′←Di

[
k′[x,y] = k[x,y]

∣∣∣k′[1,x−1] = k[1,x−1]

]
.

With this notation in place, a direct calculation suffices for the i = 0 case.

In particular, observe that

D1(k) = D1

(
k[1,1]

)
· D1

(
k[2,n]

∣∣k[1,1])
= D1

(
k[1,1]

)
· D0

(
k[2,n]

∣∣k[1,1]) ,
113

and similarlyD0(k) = D0

(
k[1,1]

)
·D0

(
k[2,n]

∣∣k[1,1]). Note that, because of Lemma 5.3.1,

we have
∣∣D0

(
k[1,1]

)
−D1

(
k[1,1]

)∣∣ ⩽ 1/n2. The total variation distance satisfies:

dTV(D0,D1) =
1

2

∑
k∈{0,1}n

|D0(k)−D1(k)|

=
1

2

∑
k∈{0,1}n

∣∣D0

(
k[1,1]

)
· D0

(
k[2,n]

∣∣k[1,1])−D1

(
k[1,1]

)
· D0

(
k[2,n]

∣∣k[1,1])∣∣
⩽

1

2

∑
k∈{0,1}n

∣∣D0

(
k[1,1]

)
−D1

(
k[1,1]

)∣∣ · ∣∣D0

(
k[2,n]

∣∣k[1,1])∣∣
⩽

1

2n2

∑
k∈{0,1}n

∣∣D0

(
k[2,n]

∣∣k[1,1])∣∣
⩽

1

n2
.

Let us now consider the distributions Di,Di+1. They both sample bits 1 up

to i using the estimated probabilities, and bits i+2 up to n with the true conditional

probabilities. Write Di+1 as

Di+1(k) = Di+1

(
k[1,i]

)
· Di+1

(
k[i+1,i+1]

∣∣k[1,i]) · Di+1

(
k[i+2,n]

∣∣k[1,i+1]

)
= Di+1

(
k[1,i]

)
· Di+1

(
k[i+1,i+1]

∣∣k[1,i]) · Di (k[i+2,n]

∣∣k[1,i+1]

)
and similarly Di as

Di(k) = Di
(
k[1,i]

)
· Di

(
k[i+1,i+1]

∣∣k[1,i]) · Di (k[i+2,n]

∣∣k[1,i+1]

)
= Di+1

(
k[1,i]

)
· Di

(
k[i+1,i+1]

∣∣k[1,i]) · Di (k[i+2,n]

∣∣k[1,i+1]

)
.

Note that, because of Lemma 5.3.1, we have

∣∣Di (k[i+1,i+1]

∣∣k[1,i])−Di+1

(
k[i+1,i+1]

∣∣k[1,i])∣∣ < 1/n2.

114

The total variation distance satisfies:

dTV(Di,Di+1)

=
1

2

∑
k∈{0,1}n

|Di(k)−Di+1(k)|

⩽
1

2
·

∑

k∈{0,1}n
Di+1

(
k[1,i]

)
·
∣∣Di (k[i+1,i+1]

∣∣k[1,i])−Di+1

(
k[i+1,i+1]

∣∣k[1,i])∣∣
· Di

(
k[i+2,n]

∣∣k[1,i+1]

)

⩽
1

2n2

∑
k∈{0,1}n

Di+1

(
k[1,i]

)
· Di

(
k[i+2,n]

∣∣k[1,i+1]

)
=

1

2n2

∑
k[1,i]∈{0,1}i

Di+1

(
k[1,i]

) ∑
k[i+1,i+1]∈{0,1}

∑
k[i+2,n]∈{0,1}n−i−1

Di
(
k[i+2,n]

∣∣k[1,i+1]

)
=

1

n2

∑
k[1,i]∈{0,1}i

Di+1

(
k[1,i]

)
=

1

n2
.

As observed above, by the triangle inequality we obtain from the Claim that

Dn, which is the output distribution of our algorithm A, has total variation distance

at most 1/n from (Samp | s′)key.

Theorem 5.3.4. For any one-way puzzle (Ver, Samp), there exists a PP language

L, and a poly-time quantum algorithm AL such that

P
(k,s)←Samp(1n)

[
Ver

(
AL(s), s

)
= ⊤

]
⩾

1

2
.

Proof. From the correctness property of the OWPuzzle, it holds that

P
(k,s)←Samp(1n)

[Ver(k, s) = ⊤] ⩾ 1− negl(n).

Recall that (Samp | s′)key is the distribution over keys output by Samp, conditioned

on the puzzle being equal to s′. It is clear that sampling the puzzle first, and then

the key does not change their joint distribution, and thus

P
(k,s)←Samp(1n)
k′←(Samp | s)key

[
Ver(k′, s) = ⊤

]
⩾ 1− negl(n).

Given a puzzle s, Lemma 5.3.2 implies that there exists a quantum polynomial-time

115

algorithm A and a PP language L, such that AL(s′) outputs a key k′ according to

a distribution D̃s′ such that

D̃s′ ≈1/n (Samp | s′)key. (5.3)

We have

P
(k,s)←Samp(1n)

k′←D̃s

[
Ver(k′, s) = ⊤

]
=
∑
s′

P
(k,s)←Samp(1n)

k′←D̃s

[
Ver(k′, s) = ⊤

∣∣ s = s′] · P
(k,s)←Samp(1n)

[s = s′].

Now note that, conditioned on s = s′, the event {Ver(k′, s) = ⊤} depends only on

k′ ← D̃s′ , and thus we may use (5.3) to get

P(k,s)←Samp(1n)

k′←D̃s

[
Ver(k′, s) = ⊤

]

⩾
∑
s′

 P
(k,s)←Samp(1n)
k′←(Samp | s)key

[
Ver(k′, s) = ⊤

∣∣ s = s′]− 1/n

 · P
(k,s)←Samp(1n)

[s = s′]

=
∑
s′

 P
(k,s)←Samp(1n)
k′←(Samp | s)key

[
Ver(k′, s) = ⊤

∣∣ s = s′] P
(k,s)←Samp(1n)

[s = s′]

− (1/n) · P

(k,s)←Samp(1n)
[s = s′]

= P
(k,s)←Samp(1n)
k′←(Samp | s)key

[
Ver(k′, s) = ⊤

]
− 1/n ⩾ 1− 1/n− negl(n) > 1− 2/n.

This completes our argument.

Now the desired result follows by combining Theorem 5.3.4 with Theo-

rem 5.1.8 (Theorem 4.2 of [KT23]).

Corollary 5.3.5. For any OWSG G of n-qubit states with key space K and with se-

curity parameter λ, there exists a PP language L, a poly(λ)-time quantum algorithm

AL, and t = poly(λ) such that

E
k←K

k′←AL(|ϕk⟩⊗t)

[
|⟨ϕk|ϕk′⟩|2

]
⩾

1

2
.

Proof. The proof of Theorem 4.2 of [KT23] shows that, for every one-way state

116

generator G, there exists a one-way puzzle P = (Samp,Ver) such that, if there

exists a quantum polynomial-time algorithm A that breaks P , then there exists a

quantum polynomial-time algorithm A∗ that breaks G. The corollary then follows

by plugging the algorithm of Theorem 5.3.4 for P – a polynomial-time quantum

algorithm with a PP oracle that breaks P – into their reduction.

117

118

Chapter 6

Conclusions and open problems

In this thesis, we investigated a host of different computational models from

the perspective of complexity-theoretic concerns, which we now briefly review. As

we do so, we will pose a few open questions that could build on our contributions,

or that are at least related to questions we investigated.

6.1 Comparator circuits

Our first investigation in Chapter 3 initiated the study of meta-computational

problems for comparator circuits, and gave the first average-case lower bounds for

this model, as we applied the shrinkage method to comparator circuits for the first

time. We envision a few possible strengthenings and future applications of our

techniques.

Algorithms and lower bounds for larger comparator circuits. Our lower

bounds and circuit analysis algorithms only work for comparator circuits of size up

to n1.5−o(1). Can we improve this? Specifically, can we show a lower bound of n1.51

for comparator circuits computing a function of n bits, and design algorithms for

comparator circuits of the same size? In Chapter 3, we used the random restriction

method to analyse comparator circuits by shrinking the number of wires and using a

structural result of [GR20] that relates the number of gates to the number of wires.

Can we analyse the effect of random restrictions on the gates directly, and show a

shrinkage lemma for comparator circuits on the number of gates, with a shrinkage

exponent Γ > 1/2? Such a lemma would imply a lower bound that is better than

n1.5, and would allow us to design algorithms for comparator circuits larger than

n1.5.

119

Hardness magnification near the state-of-the-art. Recent work on hardness

magnification [OS18, OPS19, CJW19, CHO+20] has shown that marginally im-

proving the state-of-art worst-case lower bounds in a variety of circuit models would

imply major breakthroughs in complexity theory. Although we don’t prove this

here, it is possible to show hardness magnification results for comparator circuits

of size n2+o(1) by a simple adaptation of their arguments. Unfortunately, this does

not match the best lower bounds we have for comparator circuits, which are around

n1.5−o(1) as we have seen. Can we show a hardness magnification phenomenom

nearly matching the state-of-art lower bounds for comparator circuits?

Extensions and restrictions of comparator circuits. Recent work of Ko-

marath, Sarma and Sunil [KSS18] has provided characterisations of various com-

plexity classes, such as L,P and NP, by means of extensions or restrictions of com-

parator circuits. Can our results and techniques applied to comparator circuits be

extended to those variations of comparator circuits? Can this extension shed any

light into the classes characterised by [KSS18]?

6.2 Constant-depth circuits vs. monotone circuits

In Chapter 4, we studied constant-depth circuits and monotone circuits, pos-

sibly the two most widely investigated models in circuit complexity theory. Although

our results provide new insights about the relation between them, there are excep-

tionally basic questions that remain open.

Better monotone simulations of constant-depth circuits. While [Qui53]

showed that negations can be efficiently eliminated from circuits of depth d ⩽ 2 that

compute monotone functions, already at depth d = 3 the situation is much less clear.

Theorem 4.3.3 (see Section 4.3.1) implies that every monotone function in depth-3

AC0 admits a monotone circuit of size 2n−Ω(n/ log2 n). It is unclear to us if this is

optimal. While [COS17] rules out an efficient constant-depth monotone simulation,

it is still possible (and consistent with Theorem 1.3.1) that AC0
3 ∩Mono ⊆ mNC1. Is

there a significantly better monotone circuit size upper bound for monotone func-

tions computed by polynomial-size depth-3 circuits?

Constant-depth circuits vs. monotone circuits – a definite answer. Our

results come close to solving the question posed by Grigni and Sipser [GS92]. Using

our approach, it would be sufficient to show that OddFactorn requires monotone

120

circuits of size exp(nΩ(1)). This is closely related to the challenge of obtaining an

exponential monotone circuit size lower bound for Matchingn, a longstanding open

problem in monotone complexity (see [Juk12, Section 9.11]).1 Indeed, it’s possible

to reduce OddFactor to Matching using monotone AC0 circuits (see [AK11, Lemma

6.18]).

Incidentally, the algebraic complexity variant of the AC0 vs. mSIZE[poly]

problem has been recently settled in a strong way through a new separation result

obtained by Chattopadhyay, Datta, and Mukhopadhyay [CDM21]. Could some of

their techniques be useful to attack the more elusive Boolean case?

Non-Boolean monotone CSP dichotomy. We were able to give a full picture

of which Boolean CSP problems are easy, and which are hard, for monotone circuit

size and depth. Our results built upon existing reductions in the non-monotone case

between different CSP problems, by means of polymorphisms. Recently, a full proof

of the non-Boolean CSP dichotomy was obtained [Bul17, Zhu17]. Can we also give

a dichotomy theorem for monotone circuits computing non-Boolean CSPs?

A cleverer application of lifting. Related to the two questions above is the final

discussion in Section 4.4.5, wherein we explain that lifting theorems may yet yield

a superpolynomial monotone circuit lower bound for a function in AC0 by means of

one of the two following approaches:

1. By considering non-Boolean CSPs. It’s possible that, among the non-Boolean

CSPs that are hard for monotone circuits, there exists one that is yet easy for

non-monotone algorithms. Lower bounds for non-Boolean CSPs can also be

obtained via lifting, and this may be one approach to the question of Grigni

and Sipser [GS92].

2. By considering a different interpolation of the generated instances. We also

discussed that the instances of the CSP-SATS problem generated by lifting

do not cover the entirety of the minterms and maxterms of that function.

In particular, it’s possible to construct other monotone functions for which

this technique implies an exponential monotone circuit lower bound. Is there

one choice of these functions which lies in a non-monotone complexity class

weaker than ⊕L? For instance, if we obtained such a function in NL, by the

same arguments involving depth-reduction and padding (see Lemma 4.1.1),

the problem of Grigni and Sipser [GS92] would be solved.
1Note that in OddFactor we are concerned with the existence of a spanning subgraph where the

degree of every vertex is odd, while in Matching the degree should be exactly 1.

121

A general theory on the power of cancellations. Finally, it would be interest-

ing to develop a more general theory able to explain when cancellations can speedup

the computation of monotone Boolean functions. Our investigation of monotone

simulations and separations for different classes of monotone functions (graph prop-

erties and constraint satisfaction problems) can be seen as a further step in this

direction.

6.3 Quantum one-way state generators

We showed two new results about one-way state generators. We proved that

their existence is implied by almost all computational PRSs, and that O(n)-copy

OWSGs can be broken by QPT algorithms with access to a PP oracle. These results

bring the cartography of OWSGs much more in line with that of PRSs. We outline a

few questions that remain open about the place of OWSGs in the space of quantum

cryptography.

Separating OWSG and quantum bit commitments. Two recent papers

[KT23] and [LMW23] make clear that proving that quantum bit commitments exist

relative to a random oracle and any classical oracle (with access to the random ora-

cle) would suffice to show a black box separation between OWSGs and quantum bit

commitments. It follows from our results that a black box separation between quan-

tum bit commitments and OWSGs can be achieved by proving a weaker statement,

namely that there exists an oracle O relative to which quantum bit commitments

exist and PPO ⊆ BQPO.

Since it is now known from [KT23] that OWSGs imply quantum bit com-

mitments, proving this conjecture and the accompanying separation would provide

strong evidence that quantum bit commitments are (at least among the quantum

cryptographic primitives so far proposed) the minimal assumption for quantum cryp-

tography.

Do OWSGs imply PRSs? We have now shown that PRSs imply OWSGs in

nearly the greatest possible generality, and that the existence of either have equiva-

lent known complexity ramifications. This gives additional motivation to the ques-

tion of whether these primitives are equivalent (as their classical equivalents are

known to be). Proving either an equivalence or separation (even for a limited copy

122

setting) would be an exciting accomplishment that would greatly clarify the cartog-

raphy of quantum cryptography.

Optimal reduction from PRSs to OWSGs. OWSGs are inherently computa-

tional objects, meaning they cannot be implied by statistical primitives. Currently

we know that

• PRSs with m ⩾ log n output qubits require computational assumptions and

imply OWSGs.

• There exists a c ∈ (0, 1) s.t. statistical PRSs with m ⩽ c log n output qubits

exist. So the existence of PRSs in this regime cannot imply OWSGs.

This leaves the question open of whether a PRS with m ∈ (c log n, log n] output

qubits imply the existence of OWSGs. A possible tightening would be to show that,

for any c < 1, a statistical PRS with m ⩽ c log n exists, though this would show

the surprising result that just over 1 bit of randomness per amplitude is enough to

achieve statistical closeness to Haar-random states.

123

Where are now all those Masters and Doctors whom

you knew so well in their lifetime in the full flower of

their learning? Other men now sit in their seats, and

they are hardly ever called to mind. In their lifetime

they seemed of great account, but now no one speaks of

them. Oh, how swiftly the glory of the world passes

away!

Thomas Kempis, The Imitation of Christ (c. 1420 AD)

Bibliography

[Aar05] Scott Aaronson. Quantum computing, postselection, and probabilistic

polynomial-time. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 461:3473 – 3482, 2005. 40, 98

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity

of boolean functions. Combinatorica, 7(1):1–22, 1987. 6, 15, 20, 76

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Mod-

ern Approach. Cambridge University Press, 2009. 96, 97, 111

[ABI+09] Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor,

and Heribert Vollmer. The complexity of satisfiability problems: Re-

fining Schaefer’s theorem. J. Comput. Syst. Sci., 75(4):245–254, 2009.

22, 37, 63, 77, 79, 80, 81, 82, 83, 86, 88, 90, 92, 93, 147

[ADH97] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang.

Quantum computability. SIAM J. Comput., 26(5):1524–1540, 1997.

5, 28

[AG87] Miklós Ajtai and Yuri Gurevich. Monotone versus positive. J. Assoc.

Comput. Mach., 34(4):1004–1015, 1987. 6, 15, 17, 18, 37, 63

[AGQY22] Prabhanjan Ananth, Aditya Gulati, Luowen Qian, and Henry Yuen.

Pseudorandom (function-like) quantum state generators: New defini-

tions and applications. In Theory of Cryptography Conference, pages

237–265. Springer, 2022. 24, 28, 98, 105

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and

Michael E. Saks. Minimizing disjunctive normal form formulas and

AC0 circuits given a truth table. SIAM J. Comput., 38(1):63–84,

2008. 65

125

[AK11] Jin Akiyama and Mikio Kano. Factors and Factorizations of Graphs,

volume 2031 of Lecture Notes in Mathematics. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2011. 121

[AKR+01] Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy,

and V. Vinay. Time-space tradeoffs in the counting hierarchy. In

Proceedings of the 16th Annual IEEE Conference on Computational

Complexity, Chicago, Illinois, USA, June 18-21, 2001, pages 295–302.

IEEE Computer Society, 2001. 36, 65, 66

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network.

In Symposium on Theory of Computing (STOC), pages 1–9, 1983. 10,

70

[And85] Alexander E Andreev. On a method for obtaining lower bounds for

the complexity of individual monotone functions. Doklady Akademii

Nauk SSSR, 282:1033–1037, 1985. 15, 20

[BB14] Charles H. Bennett and Gilles Brassard. Quantum cryptography:

Public key distribution and coin tossing. Theoretical Computer Sci-

ence, 560:7–11, dec 2014. 23, 26

[BCG89] Mihir Bellare, Lenore Cowen, and Shafi Goldwasser. On the struc-

ture of secret key exchange protocols. In Advances in Cryptology -

CRYPTO ’89, 9th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 20-24, 1989, Proceedings, volume

435 of Lecture Notes in Computer Science, pages 604–605. Springer,

1989. 23

[BCQ22] Zvika Brakerski, Ran Canetti, and Luowen Qian. On the compu-

tational hardness needed for quantum cryptography. arXiv preprint

arXiv:2209.04101, 2022. 25, 27, 108

[BCRV03] Elmar Böhler, Nadia Creignou, Steffen Reith, and Heribert Vollmer.

Playing with boolean blocks, part i: Post’s lattice with applications

to complexity theory. SIGACT News, 2003. 31, 37, 77, 78, 79, 90

[BCRV04] Elmar Böhler, Nadia Creignou, Steffen Reith, and Heribert Vollmer.

Playing with boolean blocks, part ii: Constraint satisfaction problems.

ACM SIGACT-Newsletter, 35, 2004. 31, 37, 77, 79, 80, 86, 90, 91, 92

126

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph

Meinel. Structure and importance of logspace-mod class. Math. Syst.

Theory, 25(3):223–237, 1992. 65, 68

[Ber82] S. J. Berkowitz. On some relationships between monotone and non-

monotone circuit complexity. Technical Report. University of Toronto,

1982. 16

[BG99] Amos Beimel and Anna Gál. On arithmetic branching programs. J.

Comput. Syst. Sci., 59(2):195–220, 1999. 5

[BGW99] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower

bounds for monotone span programs. Combinatorica, 19(3):301–319,

1999. 15, 39, 66, 68, 85, 143

[BHH16] Fernando GSL Brandao, Aram W Harrow, and Micha l Horodecki.

Local random quantum circuits are approximate polynomial-designs.

Communications in Mathematical Physics, 346:397–434, 2016. 104

[BHST14] Eric Blais, Johan H̊astad, Rocco A. Servedio, and Li-Yang Tan. On

DNF approximators for monotone boolean functions. In International

Colloquium on Automata, Languages, and Programming (ICALP),

pages 235–246, 2014. 15

[BHvMW21] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, edi-

tors. Handbook of Satisfiability - Second Edition, volume 336 of Fron-

tiers in Artificial Intelligence and Applications. IOS Press, 2021. 5

[BL88] Josh Cohen Benaloh and Jerry Leichter. Generalized secret shar-

ing and monotone functions. In Advances in Cryptology (CRYPTO),

pages 27–35, 1988. 14

[BS20] Zvika Brakerski and Omri Shmueli. Scalable pseudorandom quantum

states. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-

vances in Cryptology - CRYPTO 2020 - 40th Annual International

Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,

August 17-21, 2020, Proceedings, Part II, volume 12171 of Lecture

Notes in Computer Science, pages 417–440. Springer, 2020. 24, 29,

101

[BST13] Eric Blais, Dominik Scheder, and Li-Yang Tan. Ajtai-gurevich redux.

Manuscript. 2013. 15, 17, 37

127

[BT96] Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of

monotone functions. J. ACM, 43(4):747–770, 1996. 14

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity.

Found. Trends Theor. Comput. Sci., 2(1), 2006. 4

[Bul17] Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In

Chris Umans, editor, 58th IEEE Annual Symposium on Foundations

of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-

17, 2017, pages 319–330. IEEE Computer Society, 2017. 7, 22, 90,

121

[Bul18] Andrei A. Bulatov. Constraint satisfaction problems: complexity and

algorithms. ACM SIGLOG News, 5(4):4–24, 2018. 22

[Cab11] Enrique M. Cabaña. F distribution. In Miodrag Lovric, editor, Inter-

national Encyclopedia of Statistical Science, pages 499–501. Springer,

2011. 102

[CDL01] Andrew Chiu, George I. Davida, and Bruce E. Litow. Division in

logspace-uniform NC1. RAIRO Theor. Informatics Appl., 35(3):259–

275, 2001. 3

[CDM21] Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay.

Lower bounds for monotone arithmetic circuits via communication

complexity. In STOC ’21: 53rd Annual ACM SIGACT Symposium on

Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages

786–799. ACM, 2021. 15, 121

[CFL14] Stephen A. Cook, Yuval Filmus, and Dai Tri Man Le. The complex-

ity of the comparator circuit value problem. ACM Trans. Comput.

Theory, 6(4):15:1–15:44, 2014. 4, 10

[CHO+20] Lijie Chen, Shuichi Hirahara, Igor C. Oliveira, Ján Pich, Ninad Raj-

gopal, and Rahul Santhanam. Beyond Natural Proofs: Hardness Mag-

nification and Locality. In 11th Innovations in Theoretical Computer

Science Conference (ITCS 2020), volume 151, pages 70:1–70:48, 2020.

13, 20, 36, 120

[CJW19] Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for

all sparse NP languages. In Symposium on Foundations of Computer

Science (FOCS), pages 1240–1255, 2019. 13, 120

128

[CJW20] Lijie Chen, Ce Jin, and R. Ryan Williams. Sharp threshold results

for computational complexity. In Symposium on Theory of Computing

(STOC), pages 1335–1348, 2020. 34

[CKK+15] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen

Shaltiel, and David Zuckerman. Mining circuit lower bound proofs

for meta-algorithms. Comput. Complex., 24(2):333–392, 2015. 11, 31,

32, 33, 47

[CKLM20] Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios

Myrisiotis. Circuit lower bounds for MCSP from local pseudorandom

generators. ACM Trans. Comput. Theory, 12(3):21:1–21:27, 2020. 14,

34, 58, 60

[CKR20] Bruno Pasqualotto Cavalar, Mrinal Kumar, and Benjamin Rossman.

Monotone circuit lower bounds from robust sunflowers. In LATIN

2020: Theoretical Informatics - 14th Latin American Symposium, São

Paulo, Brazil, January 5-8, 2021, Proceedings, volume 12118 of Lec-

ture Notes in Computer Science, pages 311–322. Springer, 2020. 75

[CKS01] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity

classifications of Boolean constraint satisfaction problems, volume 7 of

SIAM monographs on discrete mathematics and applications. SIAM,

2001. 80

[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algo-

rithms. Inf. Control., 64(1-3):2–21, 1985. 3

[COS17] Xi Chen, Igor C. Oliveira, and Rocco A. Servedio. Addition is ex-

ponentially harder than counting for shallow monotone circuits. In

STOC’17—Proceedings of the 49th Annual ACM SIGACT Symposium

on Theory of Computing, pages 1232–1245. ACM, New York, 2017. 15,

17, 18, 37, 120

[CZ16] Eshan Chattopadhyay and David Zuckerman. Explicit two-source ex-

tractors and resilient functions. In Symposium on Theory of Comput-

ing (STOC), pages 670–683, 2016. 14

[DCEL09] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine.

Exact and approximate unitary 2-designs and their application to fi-

delity estimation. Physical Review A, 80(1):012304, 2009. 25

129

[dRGR22] Susanna F. de Rezende, Mika Göös, and Robert Robere. Guest col-

umn: Proofs, circuits, and communication. SIGACT News, 53(1):59–

82, 2022. 7, 15, 20, 35

[For03] Lance Fortnow. One complexity theorist’s view of quantum comput-

ing. Theor. Comput. Sci., 292(3):597–610, 2003. 7

[FV98] Tomás Feder and Moshe Y. Vardi. The computational structure of

monotone monadic SNP and constraint satisfaction: A study through

datalog and group theory. SIAM J. Comput., 28(1):57–104, 1998. 68,

85, 144

[GC01] Daniel Gottesman and Isaac Chuang. Quantum digital signatures,

2001. 25, 26, 27

[GGLR98] Oded Goldreich, Shafi Goldwasser, Eric Lehman, and Dana Ron. Test-

ing monotonicity. In Symposium on Foundations of Computer Science,

(FOCS), pages 426–435, 1998. 14

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the crypto-

graphic applications of random functions. In G. R. Blakley and David

Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO ’84,

Santa Barbara, California, USA, August 19-22, 1984, Proceedings,

volume 196 of Lecture Notes in Computer Science, pages 276–288.

Springer, 1984. 8

[GI12] Oded Goldreich and Rani Izsak. Monotone circuits: One-way func-

tions versus pseudorandom generators. Theory Comput., 8(1):231–238,

2012. 16

[GII+19] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Ka-

banets, Antonina Kolokolova, and Avishay Tal. AC0[p] lower bounds

against MCSP via the coin problem. In International Colloquium on

Automata, Languages, and Programming (ICALP), pages 66:1–66:15,

2019. 14

[GJW18] Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity

of independent set polytopes. SIAM J. Comput., 47(1):241–269, 2018.

14

[GKRS19] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov.

Adventures in monotone complexity and TFNP. In 10th Innovations

130

in Theoretical Computer Science, volume 124 of LIPIcs. Leibniz Int.

Proc. Inform., pages Art. No. 38, 19. Schloss Dagstuhl. Leibniz-Zent.

Inform., Wadern, 2019. 6, 7, 10, 15, 18, 20, 21, 35, 36, 37, 38, 63, 66,

68, 85, 89, 143

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Com-

put. Syst. Sci., 28(2):270–299, 1984. 8

[GMOR15] Siyao Guo, Tal Malkin, Igor C. Oliveira, and Alon Rosen. The power

of negations in cryptography. In Theory of Cryptography Conference

(TCC), pages 36–65, 2015. 16

[GR20] Anna Gál and Robert Robere. Lower bounds for (non-monotone)

comparator circuits. In Innovations in Theoretical Computer Science

Conference (ITCS), pages 58:1–58:13, 2020. 4, 10, 11, 14, 31, 32, 43,

45, 46, 119

[GS92] Michelangelo Grigni and Michael Sipser. Monotone complexity.

In Proceedings of the London Mathematical Society Symposium on

Boolean Function Complexity, page 57–75, USA, 1992. Cambridge

University Press. 6, 16, 18, 20, 63, 120, 121

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits.

In Symposium on Theory of Computing (STOC), pages 6–20, 1986. 6,

31, 74, 75

[HIL+23] Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, and

Igor C. Oliveira. A duality between one-way functions and average-

case symmetry of information. In Barna Saha and Rocco A. Servedio,

editors, Proceedings of the 55th Annual ACM Symposium on Theory

of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023,

pages 1039–1050. ACM, 2023. 8

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A Levin, and Michael

Luby. A pseudorandom generator from any one-way function. SIAM

Journal on Computing, 28(4):1364–1396, 1999. 8

[Hir22a] Shuichi Hirahara. Meta-computational average-case complexity: A

new paradigm toward excluding heuristica. Bull. EATCS, 136, 2022.

4

131

[Hir22b] Shuichi Hirahara. NP-hardness of learning programs and partial

MCSP. In Symposium on Foundations of Computer Science (FOCS),

2022. 14

[HLW06] Patrick Hayden, Debbie W Leung, and Andreas Winter. Aspects

of generic entanglement. Communications in mathematical physics,

265:95–117, 2006. 104

[HMMH+23] Jonas Haferkamp, Felipe Montealegre-Mora, Markus Heinrich, Jens

Eisert, David Gross, and Ingo Roth. Efficient unitary designs with

a system-size independent number of non-clifford gates. Communica-

tions in Mathematical Physics, 397(3):995–1041, 2023. 25

[HMY23] Minki Hhan, Tomoyuki Morimae, and Takashi Yamakawa. A note on

output length of one-way state generators. CoRR, abs/2312.16025,

2023. 29

[HO02] Lane A. Hemaspaandra and Mitsunori Ogihara. The Complexity The-

ory Companion. Texts in Theoretical Computer Science. An EATCS

Series. Springer, 2002. 1

[Hra71] V. M. Hrapčenko. A certain method of obtaining estimates from below

of the complexity of π-schemes. Mat. Zametki, 10:83–92, 1971. 9

[HWWY94] Johan H̊astad, Ingo Wegener, Norbert Wurm, and Sang-Zin Yi. Op-

timal depth, very small size circuits for symmetric functions in AC0.

Inf. Comput., 108(2):200–211, 1994. 70

[IKL+19] Christian Ikenmeyer, Balagopal Komarath, Christoph Lenzen,

Vladimir Lysikov, Andrey Mokhov, and Karteek Sreenivasaiah. On

the complexity of hazard-free circuits. J. ACM, 66(4):25:1–25:20, 2019.

14

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In Pro-

ceedings of Structure in Complexity Theory. Tenth Annual IEEE Con-

ference, pages 134–147, 1995. 23

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A

satisfiability algorithm for AC0. In Symposium on Discrete Algorithms

(SODA), pages 961–972, 2012. 11, 31

132

[IMZ19] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudoran-

domness from shrinkage. J. ACM, 66(2):11:1–11:16, 2019. 11, 31, 34,

58, 59, 60

[INN+22] Sandy Irani, Anand Natarajan, Chinmay Nirkhe, Sujit Rao, and

Henry Yuen. Quantum search-to-decision reductions and the state

synthesis problem. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2022. 42

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences

of one-way permutations. In Proceedings of the Twenty-First Annual

ACM Symposium on Theory of Computing, STOC ’89, page 44–61,

New York, NY, USA, 1989. Association for Computing Machinery. 23

[IRS21] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on

any samplable distribution suffices: New characterizations of one-way

functions by meta-complexity. Electron. Colloquium Comput. Com-

plex., TR21-082, 2021. 8

[JCG97] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties

of constraints. J. ACM, 44(4):527–548, jul 1997. 79

[Jea98] Peter Jeavons. On the algebraic structure of combinatorial problems.

Theor. Comput. Sci., 200(1-2):185–204, 1998. 37, 77, 79, 80, 92

[JKB95] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continu-

ous univariate distributions. Vol. 2. Wiley Series in Probability and

Mathematical Statistics: Applied Probability and Statistics. John Wi-

ley & Sons, Inc., New York, second edition, 1995. A Wiley-Interscience

Publication. 102

[JLL76] Neil D. Jones, Y. Edmund Lien, and William T. Laaser. New problems

complete for nondeterministic log space. Math. Syst. Theory, 10:1–17,

1976. 93

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum

states. In Advances in Cryptology–CRYPTO 2018: 38th Annual In-

ternational Cryptology Conference, Santa Barbara, CA, USA, August

19–23, 2018, Proceedings, Part III 38, pages 126–152. Springer, 2018.

23, 24, 99

133

[Joh03] Jan Johannsen. The complexity of satisfiability problems with two

occurrences. Unpublished Manuscript, 2003. 39, 68, 69

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers.

Springer, 2012. 2, 17, 51, 69, 91, 121

[KKL+20] Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisio-

tis, and Igor Carboni Oliveira. Algorithms and lower bounds for De

Morgan formulas of low-communication leaf gates. In Conference on

Computational Complexity (CCC), pages 15:1–15:41, 2020. 11, 14

[KR13] Ilan Komargodski and Ran Raz. Average-case lower bounds for for-

mula size. In Symposium on Theory of Computing (STOC), pages

171–180, 2013. 11, 31, 32, 33

[Kra97] Jan Kraj́ıček. Interpolation theorems, lower bounds for proof systems,

and independence results for bounded arithmetic. J. Symbolic Logic,

62(2):457–486, 1997. 14

[Kre21] William Kretschmer. Quantum pseudorandomness and classical com-

plexity. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 23,

25, 28, 31, 40, 41, 97, 98, 103, 104, 105

[KRT17] Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case

lower bounds for De Morgan formula size: Matching worst-case lower

bound. SIAM J. Comput., 46(1):37–57, 2017. 11, 32, 33

[KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic com-

munication complexity of set intersection. SIAM J. Discret. Math.,

5(4):545–557, 1992. 68

[KSS18] Balagopal Komarath, Jayalal Sarma, and K. S. Sunil. Comparator

circuits over finite bounded posets. Inf. Comput., 261:160–174, 2018.

10, 120

[KT23] Dakshita Khurana and Kabir Tomer. Commitments from quantum

one-wayness. CoRR, abs/2310.11526, 2023. 23, 25, 26, 27, 28, 31, 40,

100, 101, 109, 110, 116, 122

[Kup15] Greg Kuperberg. How hard is it to approximate the jones polynomial?

Theory of Computing, 11(6):183–219, 2015. 98

134

[Kup21] Denis Kuperberg. Positive first-order logic on words. In Symposium

on Logic in Computer Science (LICS), pages 1–13, 2021. 15, 17, 37

[Kup22] Denis Kuperberg. Positive first-order logic on words and graphs.

CoRR, abs/2201.11619, 2022. 15, 17, 37

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Struc-

ture in Complexity Theory Conference (CCC), pages 102–111, 1993.

36, 68

[LC97] Hoi-Kwong Lo and H. F. Chau. Is quantum bit commitment really

possible? Physical Review Letters, 78(17):3410–3413, apr 1997. 23,

25, 109

[LMW23] Alex Lombardi, Fermi Ma, and John Wright. A one-query lower bound

for unitary synthesis and breaking quantum cryptography. Cryptology

ePrint Archive, Paper 2023/1602, 2023. 25, 28, 122

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov

complexity. In Sandy Irani, editor, 61st IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2020, Durham, NC, USA,

November 16-19, 2020, pages 1243–1254. IEEE, 2020. 8

[LT09] Benôıt Larose and Pascal Tesson. Universal algebra and hardness

results for constraint satisfaction problems. Theor. Comput. Sci.,

410(18):1629–1647, 2009. 22

[LV08] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov

Complexity and Its Applications. Texts in Computer Science. Springer,

2008. 44

[MS92] Ernst W. Mayr and Ashok Subramanian. The complexity of circuit

value and network stability. J. Comput. Syst. Sci., 44(2):302–323,

1992. 4, 9, 10

[Mul59] Mervin E. Muller. A note on a method for generating points uniformly

on n-dimensional spheres. Commun. ACM, 2(4):19–20, apr 1959. 98

[Mul87] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a

matrix over an arbitrary field. Comb., 7(1):101–104, 1987. 3

135

[MY22a] Tomoyuki Morimae and Takashi Yamakawa. One-wayness in quantum

cryptography. arXiv preprint arXiv:2210.03394, 2022. 24, 25, 27, 28,

29, 39, 99, 100, 103

[MY22b] Tomoyuki Morimae and Takashi Yamakawa. Quantum commitments

and signatures without one-way functions. In Annual International

Cryptology Conference, pages 269–295. Springer, 2022. 8, 23, 25, 40,

99, 101, 108

[NC16] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information (10th Anniversary edition). Cambridge Univer-

sity Press, 2016. 96, 97

[Nec66] È. I. Nechiporuk. On a Boolean function. Dokl. Akad. Nauk SSSR,

169:765–766, 1966. 10, 14

[Oko82] E. A. Okol’nishnikova. The effect of negations on the complexity of

realization of monotone Boolean functions by formulas of bounded

depth. Metody Diskret. Analiz., (38):74–80, 1982. 6, 15, 17, 37, 63

[Oli13] Igor Carboni Oliveira. Algorithms versus circuit lower bounds. CoRR,

abs/1309.0249, 2013. 11

[Oli15] Igor C. Oliveira. Unconditional lower bounds in complexity theory,

2015. (PhD Thesis, Columbia University). 16

[OPS19] Igor C. Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnifica-

tion near state-of-the-art lower bounds. In Computational Complexity

Conference (CCC), pages 27:1–27:29, 2019. 13, 120

[OS18] Igor C. Oliveira and Rahul Santhanam. Hardness magnification for

natural problems. In Symposium on Foundations of Computer Science

(FOCS), pages 65–76, 2018. 13, 120

[OSP23] Ryan O’Donnell, Rocco A. Servedio, and Pedro Paredes. Explicit

orthogonal and unitary designs, 2023. 25, 28, 31, 40, 103, 109

[OSS19] Igor C. Oliveira, Rahul Santhanam, and Srikanth Srinivasan. Parity

helps to compute majority. In 34th Computational Complexity Confer-

ence, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, pages

23:1–23:17, 2019. 36, 66

136

[Pos41] Emil L. Post. The Two-Valued Iterative Systems of Mathematical

Logic. (AM-5). Princeton University Press, 1941. 37

[PR17] Toniann Pitassi and Robert Robere. Strongly exponential lower

bounds for monotone computation. In Symposium on Theory of Com-

puting (STOC), pages 1246–1255, 2017. 6, 75

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs

and monotone computations. J. Symb. Log., 62(3):981–998, 1997. 14

[Qui53] W. V. Quine. Two theorems about truth functions. Bol. Soc. Mat.

Mexicana, 10:64–70, 1953. 16, 19, 73, 120

[Raz85a] A. A. Razborov. Lower bounds on the monotone complexity of some

Boolean functions. Dokl. Akad. Nauk SSSR, 281(4):798–801, 1985. 14

[Raz85b] Alexander A Razborov. Lower bounds on monotone complexity of the

logical permanent. Mathematical Notes of the Academy of Sciences of

the USSR, 37(6):485–493, 1985. 15, 18, 20, 143

[Raz90] A. A. Razborov. Lower bounds on the complexity of realization of

symmetric Boolean functions by gate switching circuits. Mat. Zametki,

48(6):79–90, 1990. 10

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. In Harold N.

Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual

ACM Symposium on Theory of Computing, Baltimore, MD, USA,

May 22-24, 2005, pages 376–385. ACM, 2005. 39, 65, 69

[Rez23] Susanna Rezende. Personal communication, 2023. 90

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hier-

archy. Combinatorica, 19(3):403–435, 1999. 85, 90, 91

[Ros08a] Benjamin Rossman. Homomorphism preservation theorems. J. ACM,

55(3):Art. 15, 53, 2008. 16, 17, 20, 73, 76

[Ros08b] Benjamin Rossman. On the constant-depth complexity of k-clique. In

Symposium on Theory of Computing (STOC), pages 721–730, 2008.

15

[Ros17a] Benjamin Rossman. An entropy proof of the switching lemma and

tight bounds on the decision-tree size of AC0. 2017. 73

137

[Ros17b] Benjamin Rossman. An improved homomorphism preservation theo-

rem from lower bounds in circuit complexity. In Innovations in Theo-

retical Computer Science Conference (ITCS), pages 27:1–27:17, 2017.

16, 17, 20

[RPRC16] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A.

Cook. Exponential lower bounds for monotone span programs. In

Symposium on Foundations of Computer Science (FOCS), pages 406–

415, 2016. 4, 7, 10, 15

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook

of Constraint Programming, volume 2 of Foundations of Artificial In-

telligence. Elsevier, 2006. 7

[RW92] Ran Raz and Avi Wigderson. Monotone circuits for matching require

linear depth. J. ACM, 39(3):736–744, 1992. 15, 18, 70

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In

Proceedings of the 10th Annual ACM Symposium on Theory of Com-

puting, May 1-3, 1978, San Diego, California, USA, pages 216–226.

ACM, 1978. 7, 22, 37, 63, 77, 79, 80, 90, 91, 92

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization

and discrete logarithms on a quantum computer. SIAM J. Comput.,

26(5):1484–1509, 1997. 7

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-

Hoeffding bounds for applications with limited independence. SIAM

J. Discret. Math., 8(2):223–250, 1995. 59, 60

[ST17] Rocco A. Servedio and Li-Yang Tan. What circuit classes can be

learned with non-trivial savings? In Innovations in Theoretical Com-

puter Science Conference (ITCS), pages 30:1–30:21, 2017. 11, 14, 61

[Sto95] Alexei P. Stolboushkin. Finitely monotone properties. In Symposium

on Logic in Computer Science (LICS), pages 324–330, 1995. 15, 17,

37

[Sub61] B. A. Subbotovskaja. Realization of linear functions by formulas using

∨, &, −. Soviet Math. Dokl., Soviet Mathematics. Doklady, 2, pages

110–112, 1961. 31

138

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey

of recent results and open questions. Found. Trends Theor. Comput.

Sci., 5(3-4):207–388, 2010. 4

[Tal15] Avishay Tal. #SAT algorithms from shrinkage. Electron. Colloquium

Comput. Complex., page 114, 2015. 11

[Tar88] É. Tardos. The gap between monotone and nonmonotone circuit com-

plexity is exponential. Combinatorica, 8(1):141–142, 1988. 15, 18, 20,

90

[Urq87] Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–

219, 1987. 69

[Val80] Leslie G. Valiant. Negation can be exponentially powerful. Theor.

Comput. Sci., 12:303–314, 1980. 16

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff.

Fast parallel computation of polynomials using few processors. SIAM

J. Comput., 12(4):641–644, 1983. 4

[Wat18] John Watrous. The Theory of Quantum Information. Cambridge

University Press, 2018. 98, 99, 103

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, jan

1983. 23, 26

[Wig94] Avi Wigderson. NL/poly ⊆ ⊕L/poly (preliminary version). In Pro-

ceedings of the Ninth Annual Structure in Complexity Theory Con-

ference, Amsterdam, The Netherlands, June 28 - July 1, 1994, pages

59–62. IEEE Computer Society, 1994. 5

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial

lower bounds. SIAM Journal on Computing, 42(3):1218–1244, 2013.

12

[Wil14a] Ryan Williams. Algorithms for circuits and circuits for algorithms.

In Conference on Computational Complexity (CCC), pages 248–261,

2014. 11, 12

[Wil14b] Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of

the ACM, 61(1):2:1–2:32, 2014. 11, 12

139

[Yan22] Jun Yan. General properties of quantum bit commitments. In Inter-

national Conference on the Theory and Application of Cryptology and

Information Security, pages 628–657. Springer, 2022. 25, 27

[Zhu17] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans,

editor, 58th IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages

331–342. IEEE Computer Society, 2017. 7, 22, 90, 121

140

Appendix A

Appendix to Chapter 3

A.1 An efficient simulation of B2-formulas by compara-

tor circuits

We observe in this section that general formulas can be simulated by com-

parator circuits with at most a constant factor blow-up on their size.

A B2-formula is a Boolean formula whose gates are taken from the set of all

16 binary gates. The input leaves are labelled with literals (i.e., xi or ¬xi) or binary

constants.

We first observe that, for every binary gate g, it’s possible to construct a

comparator with exactly 4 wires such that, when given x, y,¬x,¬y, it computes

g(x, y) and ¬g(x, y).

Lemma A.1.1. For every binary gate g ∈ {0, 1}2 → {0, 1}, there exists a com-

parator circuit Cg : {0, 1}4 → {0, 1}4 such that one of the wires of Cg(x, y,¬x,¬y)

outputs g(x, y) and another wire outputs ¬g(x, y).

Proof. We show something slightly stronger. We give four comparator circuits with

4 wires each, and such that all of the 16 Boolean functions g : {0, 1}2 → {0, 1} are

computed by one of the wires of these 4 circuits. Moreover, those circuits will have

the property that, if g(x, y) is computed by one of the wires, then so is ¬g(x, y).

One such circuit is the circuit computing ⊕,¬⊕, 0, 1 presented in the Introduction

(Figure 1.3). Another simple such example is a circuit computing x, y,¬x,¬y, which

does not have any gates. The remaining cases are shown in Figures A.1 and A.2

below.

141

x ▲ x ∨ y

y • x ∧ y

¬x • ¬(x ∨ y)

¬y ▼ ¬(x ∧ y)

Figure A.1: A comparator circuit computing ∧,∨,¬∧,¬∨.

x ▲ x ∨ ¬y

¬y • x ∧ ¬y

¬x • ¬(x ∨ ¬y)

y ▼ ¬(x ∧ ¬y)

Figure A.2: A comparator circuit computing x ∨ ¬y,¬(x ∨ ¬y), x ∧ ¬y,¬(x ∧ ¬y).

This completes the proof.

We now show how the lemma allows us to deduce the reduction.

Theorem A.1.2. For every B2-formula with ℓ leaves and s gates, there exists a

comparator circuit with 2ℓ wires and O(s) gates computing the same function.

Proof. We give a syntactic transformation from a B2-formula F into an equivalent

comparator circuit CF with the desired efficiency.

Our transformation begins at the input layer. We create a new negated copy

of each leaf of the formula F , giving us 2ℓ input wires in total in CF . We then

replace each binary gate g of F with a comparator circuit Cg computing g(x, y) and

¬g(x, y), proved to exist in Lemma A.1.1. We observe that this can be done by

induction on the depth of the circuit. Every gate g at the bottom layer is connected

with two input leaves x and y. Since we now have a negated copy of each leaf, we

can input x, y,¬x,¬y to Cg, and thus compute g(x, y) and ¬g(x, y). We observe

that, since every input leaf is used only once in F , and we created a negated copy of

every leaf, the same leaf will also not be used twice in CF . On the induction step,

a gate g will depend on two gates g0 and g1 at a lower layer, for which by induction

we were able to compute g0,¬g0 and g1,¬g1. We input those values into Cg, thus

computing g and ¬g.

Since each gate g is turned into a circuit Cg which has O(1) comparator

gates, we obtain O(s) comparator gates at the end.

142

Appendix B

Appendices to Chapter 4

B.1 A Lower Bound for 3-XOR-SAT Using the Approxi-

mation Method

As discussed in Section 1.3.3, [GKRS19] obtained an exponential lower bound

on the monotone circuit size of the function 3-XOR-SAT using techniques from com-

munication complexity and lifting. Here we observe that a weaker but still super-

polynomial lower bound can be proved using the approximation method.

First, we recall the function OddFactorn : {0, 1}(
n
2) → {0, 1} of Section 4.2.2,

which accepts a given graph if the graph contains an odd factor, which is a spanning

subgraph in which the degree of every vertex is odd. For convenience, in this section

we consider a weaker version of OddFactor, which takes as an input a bipartite graph

with n vertices on each part, and accepts if the graph contains an odd factor. Let

Bipartite-OddFactorn : {0, 1}n
2

→ {0, 1} be this function. We remark that the lower

bounds of Babai, Gál and Wigderson [BGW99] for OddFactor (Theorem 4.2.5) also

hold for Bipartite-OddFactor. The proof of the monotone circuit lower bound in

particular is essentially Razborov’s lower bound for Matching via the approximation

method [Raz85b].

Theorem B.1.1 ([BGW99]). We have

mSIZE(Bipartite-OddFactorn) = nΩ(logn)

and

mDEPTH(Bipartite-OddFactorn) = Ω(n).

We can reduce Bipartite-OddFactor to 3-XOR-SAT by noting that computing

Bipartite-OddFactorn(M) on a given matrix M ∈ {0, 1}n
2

is computationally equiv-

143

alent to deciding the satisfiability of the following F2 linear system over variables

{xij}:

• For all i ∈ [n]:
⊕n

k=1 xik = 1;

• For all j ∈ [n]:
⊕n

k=1 xkj = 1;

• For all i, j ∈ [n] such that Mij = 0: xij = 0.

We can then use a circuit for 3-XOR-SAT to solve this system by using a

standard trick of introducing new variables to reduce the number of variables that

appear in each equation, as done in the textbook reduction from SAT to 3-SAT.

As the corresponding reductions turn out to be monotone, this implies monotone

circuit and formula lower bounds for 3-XOR-SAT. We note that a somewhat similar

argument (in the non-monotone setting) appears in Feder and Vardi [FV98, Theorem

30] regarding constraint satisfaction problems with the ability to count.

In order to formalise this argument, we will need the following definition and

results.

Definition B.1.2. Let f be a Boolean function. We define dual(f) : x 7→ ¬f(¬x)

as the dual of f .

Lemma B.1.3. Let f be a monotone Boolean function. We have mSIZE(f) =

mSIZE(dual(f)) and mDEPTH(f) = mDEPTH(dual(f)).

Proof. The idea is to push negations to the bottom and eliminate double negations

at the input layer. In other words, applying De Morgan rules, we can convert any

{∧,∨}-circuit computing f into a circuit computing dual(f) by swapping ∧-gates

for ∨-gates, and vice-versa. Moreover, this transformation preserves the depth of

the circuit.

We are ready to describe a monotone reduction from Bipartite-OddFactorn to

3-XOR-SAT, which implies the desired lower bounds.

Theorem B.1.4. There exists ε > 0 such that

mSIZE(3-XOR-SAT) = nΩ(logn) and mDEPTH(3-XOR-SAT) = Ω(nε).

Proof. Recall that the value of the function Bipartite-OddFactorn(M) on a given

matrix M ∈ {0, 1}n
2

is equal to 1 if the following system is satisfiable:

• For all i ∈ [n]:
⊕n

k=1 xik = 1;

144

• For all j ∈ [n]:
⊕n

k=1 xkj = 1;

• For all i, j ∈ [n] such that Mij = 0: xij = 0.

We introduce some extra variables to reduce the number of variables in each equation

in the following way. For every i ∈ [n], introduce variables zi1, . . . , zi(n−1) and the

equations

zi1 = xi1 ⊕ xi2,

zi2 = zi1 ⊕ xi3,

. . .

zi,(n−1) = zi,(n−2) ⊕ xi,n,

zi,(n−1) = 1.

Now note that these equations imply zi,(n−2) =
⊕n

k=1 xik = 1. For each “column”

equation
⊕n

k=1 xkj = 1, we also add variables wj1, . . . , wj(n−1) as above. In total, we

add at most 2n2 variables and 2n2 equations. Therefore, there is a system of linear

equations on O(n2) variables, where each constraint contains at most 3 variables,

which is satisfiable if and only if Bipartite-OddFactorn(M) = 1. Moreover, it is easy

to see that the characteristic vector α of the set of equations of this system can be

computed from M by an anti-monotone projection, as we activate a constraint that

depends on the input when Mij = 0.

Now let f = dual(3-XOR-SAT) and β = ¬α. Since, by definition, 3-XOR-SAT

accepts unsatisfiable systems, we get Bipartite-OddFactorn(M) = ¬3-XOR-SAT(α) =

f(β) and that β is a monotone projection of M . Therefore, by Lemma B.1.3, we

obtain

mSIZE(Bipartite-OddFactorn) ⩽ mSIZE(3-XOR-SAT)

and

mDEPTH(Bipartite-OddFactorn) ⩽ mDEPTH(3-XOR-SAT).

B.2 Background on Post’s Lattice and Clones

In this section, we include the definitions of the various clones that are used

in Chapter 4, as well as a figure of Post’s lattice, which can be helpful when checking

the proofs of Section 4.4.

Let →: (x, y) 7→ (¬x∨ y). Let also ↔: (x, y) 7→ ¬(x⊕ y) and id : x 7→ x. Let

f : {0, 1}k → {0, 1} be a Boolean function. We say that f is linear if there exists

145

c ∈ {0, 1}k and b ∈ {0, 1} such that f(x) = ⟨c, x⟩+ b (mod 2). We say that f is self-

dual if f = dual(f). Let a ∈ {0, 1}. We say that f is a-reproducing if f(a, . . . , a) = a.

We say that a set T ⊆ {0, 1}k is a-separating if there exists i ∈ [k] such that xi = a

for all x ∈ T . We say that f is a-separating if f−1(a) is a-separating. We say that

f is a-separating of degree k if every T ⊆ f−1(a) such that |T | = k is a-separating.

The basis of a clone B is a set of Boolean functions F such that B = [F].

146

Name Definition Base

BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF : f is 0-reproducing} {∧,⊕}
R1 {f ∈ BF : f is 1-reproducing} {∨,↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF : f is monotonic} {∨,∧, 0, 1}
M1 M ∩ R1 {∨,∧, 1}
M0 M ∩ R0 {∨,∧, 0}
M2 M ∩ R2 {∨,∧}
Sn
0 {f ∈ BF : f is 0-separating of degree n} {→, dual(hn)}

S0 {f ∈ BF : f is 0-separating} {→}
Sn
1 {f ∈ BF : f is 1-separating of degree n} {x ∧ y, hn}

S1 {f ∈ BF : f is 1-separating} {x ∧ y}
Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ z), dual(hn)}
S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn
01 Sn

0 ∩M {dual(hn), 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩ R2 ∩M {x ∨ (y ∧ z), dual(hn)}
S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩ R2 {x ∧ (y ∨ z), hn}
S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn
11 Sn

1 ∩M {hn, 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩ R2 ∩M {x ∧ (y ∨ z), hn}
S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f ∈ BF : f is self-dual} {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D2 D ∩M {(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)}
L {f ∈ BF : f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ 1}
V {f ∈ BF : f is constant or an n-ary OR function} {∨, 0, 1}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E {f ∈ BF : f is constant or an n-ary AND function} {∧, 0, 1}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ [{0}] ∪ [{1}] {id, 0, 1}
I0 [{id}] ∪ [{0}] {id, 0}
I1 [{id}] ∪ [{1}] {id, 1}
I2 [{id}] {id}

Table B.2: Table of all closed classes of Boolean functions, and their bases. Here, hn denotes
the function hn(x1, . . . , xn+1) =

∨n+1
i=1

∧n+1
j=1,j ̸=i xj . See Definition B.1.2 for the definition of

dual(·). The same table appears in [ABI+09, Table 1].

147

	List of Tables
	List of Figures
	Acknowledgments
	Declaration
	Abstract
	Chapter Introduction
	Introductory overview of the results
	Algorithms and lower bounds for comparator circuits
	Average-case lower bounds
	Algorithms for comparator circuits

	Constant-depth circuits vs. monotone circuits
	Constant-depth circuits vs. monotone circuits
	Non-trivial monotone simulations and their consequences
	Monotone complexity of constraint satisfaction problems

	The computational hardness of quantum one-wayness
	Building one-way state generators from pseudorandom states
	Fixed-copy one-way state generators
	A quantum lower bound for PP from a cryptographic assumption
	Concurrent and further work

	Chapter Technical overview
	Shrinkage for comparator circuits
	Constant-depth circuits vs. monotone circuits
	Quantum one-wayness

	Chapter Algorithms and Lower Bounds for Comparator Circuits from Shrinkage
	Preliminaries
	Definitions and notations
	Structural properties of comparator circuits

	Average-case Lower Bounds
	The hard function
	Proof of the average-case lower bound

	Tight Average-case Lower Bounds from a Nečiporuk-Type Property
	Proof of thm:general

	#SAT Algorithms
	Memorisation and simplification of comparator circuits
	The algorithm

	Pseudorandom Generators and MCSP Lower Bounds
	Proof of the PRG
	Proof of the MCSP lower bound
	Pseudorandom Shrinkage for Comparator Circuits: Proof of Lemma 17

	Learning Algorithms

	Chapter Constant-depth circuits vs. monotone circuits
	Preliminaries
	Notation
	Background results

	Constant-Depth Circuits vs. Monotone Circuits
	A monotone size lower bound for a function in AC0[]
	A monotone depth lower bound for a graph property in AC0
	Efficient monotone padding for graph properties

	Non-Trivial Monotone Simulations and Their Consequences
	A non-trivial simulation for bounded-depth circuits
	Non-monotone lower bounds from monotone simulations

	Monotone Complexity of Constraint Satisfaction Problems
	Definitions
	Basic facts about CSP-SAT
	A monotone dichotomy for CSP-SAT
	Some auxiliary results
	Consequences for monotone circuit lower bounds via lifting

	Schaefer's Theorem in Monotone Complexity
	Connectivity and generation functions
	Proof of reduction lemmas
	Monotone circuit upper bounds

	Chapter On the Computational Hardness of Quantum One-Wayness
	Preliminaries
	Basic quantum computing
	Computational complexity
	Quantum information theory and cryptography
	Probability distributions
	Approximate t-designs

	One-way state generators from compressing pseudorandom states
	Unconditional OWSGs from efficient approximate t-designs

	Breaking one-way state generators with a PP oracle

	Chapter Conclusions and open problems
	Comparator circuits
	Constant-depth circuits vs. monotone circuits
	Quantum one-way state generators

	Bibliography
	Appendix Appendix to chp:cc
	An efficient simulation of B2-formulas by comparator circuits

	Appendix Appendices to chp:co23
	A Lower Bound for 3-XOR-SAT Using the Approximation Method
	Background on Post's Lattice and Clones

